

Restoration Plan

Rockwell Pastures Site

Stanly County, North Carolina

Project ID# 000624 Prepared for:

NCDENR-Ecosystem Enhancement Program 1652 Mail Service Center Raleigh, North Carolina 27699-1652 **Submitted by:**

Environmental Banc & Exchange

Submitted: August 13, 2008

Prepared by:

Direct Phone Number: (919) 653-2950

Submitted by:

Kimley-Horn and Associates, Inc.		Environmental Banc & Exchange		
3001 Weston Parkway		909 Capability Drive, Suite 3100		
Cary, NC 27513		Raleigh, NC 27606		
Phone Number:	(919) 677-2000	Phone Number:	(919) 829-9909	
Fax Number:	(919) 677-2050	Fax Number:	(919) 829-9913	
Project Manager:	Todd St. John, P.E.	Project Manager:	Norton Webster, PWS	

Executive Summary

Site Description

The Rockwell Pastures Stream and Wetland Restoration Site (Site) is located 6 miles southeast of Albemarle in Stanly County (**Figure 1**). Rockwell Pastures lies within the Yadkin Basin North Carolina Division of Water Quality (DWQ) sub-basin 03-07-08 and local HUC 03040104010020. The site contains seven degraded unnamed tributaries (UT1, UT2, UT3, UT4, UT5, UT6, and UT7) to David's Creek/Lake Tillery (**Figure 2**). Lake Tillery is listed as DWQ class Water Supply (WS-IV, CA) waters. As such, these streams are considered to be WS-IV streams. The project area is located in the Carolina Slate Belt sub-ecoregion of the Piedmont ecoregion.

In response to RFP 16-D07033, the Site was proposed by EBX, LLC (EBX) and accepted by the North Carolina Division of Environment and Natural Resources (NCDENR), Ecosystem Enhancement Program (EEP) to provide stream and wetland mitigation in the Yadkin River Basin (Cataloging Unit 03040104). EBX has engaged Kimley-Horn and Associates Inc. as designer for the Site.

The upper part of the watershed currently is used for agriculture and silviculture purposes. No appropriate riparian vegetation is present because row crops are planted to the existing stream edges of the upper part of UT1, UT5, UT6 and UT7. These streams also have been directly impacted and straightened in some areas. The silvicultural activities that included direct impacts to the stream bed have completely destabilized UT4 and have resulted in a removal of native bottomland or headwater forest vegetation. Much of the buffer along the stream is in row pines, sparsely vegetated with herbaceous species, or inhabited with invasive species. The lower part of the project — which includes UT1, UT2, and UT3 — is pastureland where cattle have unlimited access to the streams. As a result, the streams are highly sedimented and contaminated with livestock waste, which is a source of BOD, fecal coliform, and nutrients among other pollutants. Most of the buffer is vegetated with fescue or other grasses with a few areas of very sparse trees. The main tributary (UT1) was completely straightened and channelized in the early 1970's, according to the landowner.

Restoration Project Goals and Objectives

The goal of this project is to restore natural stream and wetland system functions to a site highly degraded by historical agricultural activity and livestock management. Because of the size of the project and its position in the landscape, the project will address an entire watershed. The project will provide ecological functional lift to the existing system by restoring the stream and riparian habitat. It also will seek to restore and enhance non-riparian low elevation seeps. Benefits will include improved water quality by reducing sediment load through stabilization and by reducing nutrient and other pollutant input by the addition of forested riparian buffers planted with native species. Additionally, the forested buffers and reconnection with the historic flood plain or new flood plain will improve channel hydraulics and system capacity. Improvements to the ecosystem include the addition of in-stream habitat by the use of in-stream structures and bank revetments such as root wads. By providing an appropriate mix of native forest vegetation to create a canopy and understory, the soil structure will improve, a leaf litter source will be established to support aquatic and terrestrial ecosystems, and shading and cooling will be provided to improve water quality. These improvements will provide functional uplift for the watershed as a whole. Removing the riparian and wetland areas from

agriculture will reduce sedimentation and nutrient inputs. In addition, prohibiting livestock access from the stream and riparian area will improve stream function. Excluding livestock will prevent direct damage from hoof shear and animal waste discharging directly to the stream. This action will decrease sedimentation, improve bank vegetation, and reduce eutrophication and fecal coliform contamination from animal waste.

The pattern, profile, and dimension of the channel will be adjusted to approximately match regional curve values and reference reach conditions. Structures such as rock cross vanes, a-vanes, rock vanes, log sills, log vanes, single- and double-wing deflectors and bank revetments will be used to provide grade control, add habitat, and/or introduce bedform diversity. On-site wetlands will be restored and enhanced to non-riparian low elevation seep wetlands as described by *Classification of the Natural Communities of North Carolina, Third Approximation* (Schafale and Weakley 1990).

The riparian areas at this site will be planted with a combination of Piedmont/Mountain bottomland forest, Piedmont/Mountain levee forest, and Piedmont/Low Mountain alluvial forest communities as described by Schafale and Weakley (Schafale and Weakley 1990). The wetland areas will be planted with a mix of non-riparian low elevation seep herbaceous vegetation and bottomland hardwood forest vegetation.

Project Stream	Existing Stream (ft)	Prop. Stream (ft)	Restoration (ft)	Enhance Level I (ft)	Enhance Level II (ft)	Preserve (ft)	Wetland Restoration (ac)
UT1	6,749	7,224	5,660	863	701	0	1.7 (W01)
UT2	635	635	0	0	635	0	0.0
UT3	717	872	872	0	0	0	0.0
UT4	4,024	5,006	3,357	982	596	72	0.0
UT5	1,075	1,075	0	0	1,075	0	0.0
UT6	1,174	1,174	0	0	1,174	0	0.0
UT7	1,313	1,419	689	0	730	0	0.0
Total Site	15,687	17,405	10,578	1,845	4,911	72	1.7
Total SMUs		-	10,578	1,230	1,964	14	
Total WMUs		-		-		-	1.7

Table 1: Project Restoration Summary

Table 2: Mitigation Unit Summary

Contract Stream Mitigation Units (SMU)	Proposed Stream Mitigation Units (SMU)	Contract Wetland Mitigation Units (WMU)	Proposed Wetland Mitigation Units (WMU)
13,427	13,786	1.5	1.7

Table of Contents

	Execu	Itive Summary	i
	Site D	Description	i
	Resto	ration Project Goals and Objectives	i
1.0	Pr	oject Site Identification and Location	. 1
1.1	1	Directions to Project Site	. 1
1.2	2	USGS Hydrologic Unit Code and NCDWQ River Basin Designations	. 1
1.3	3	Project Vicinity Map	. 1
2.0	W	atershed Characterization	. 1
2.1	1	Drainage Area	. 1
2.2	2	Surface Water Classification/Water Quality	. 2
2.3	3	Physiography, Geology, and Soils	. 2
2.4	1	Historical Land Use and Development Trends	. 3
	2.4.1	Historical Land Use	. 3
	2.4.2	Development Trends	. 3
2.5	5	Endangered/Threatened Species	. 3
2.6	6	Cultural Resources	. 6
2.7	7	Potential Constraints	. 6
	2.7.1	Property Ownership and Boundary	. 6
	2.7.2	Site Access	. 6
	2.7.3	Utilities	. 7
	2.7.4	FEMA/Hydrologic Trespass	. 7
3.0	Pr	oject Site Streams	.7
3.1	1	Channel Classification	. 9
3.2	2	Channel Discharge	10
3.3	3	Channel Morphology	11
3.4	1	Channel Stability Assessment	11
3.5	5	Bankfull Verification	12
3.6	6	Vegetation	12
4.0	Re	eference Stream	12
4.1	1	Watershed Characterization	12
4.2	2	Channel Classification	13
4.3	3	Discharge	13

4.4	Channel Stability Assessment	13
4.5	Bankfull Verification	14
4.6	Vegetation	14
5.0	Project Site Wetlands	14
5.1	Jurisdictional Wetlands	15
5.2	Hydrological Characterization	15
5.2	.1 Groundwater Modeling	15
5.2	.2 Surface Water Modeling	15
5.2	.3 Hydrologic Budget	
5.3	Soil Characterization	16
5.3	.1 Taxonomic Classification	
5.3	.2 Profile Description	
5.3	.3 Hydraulic Conductivity	16
5.4	Plant Community Characterization	17
6.0	Reference Wetland	17
6.1	Hydrological Characterization	17
6.2	Soil Characterization	17
6.2	.1 Taxonomic Classification	17
6.2	.2 Profile Description	17
6.2	.3 Hydraulic Conductivity	17
6.3	Plant Community Characterization	17
6.3	.1 Community Description	17
7.0	Project Site Restoration Plan	18
7.1	Restoration Project Goals and Objectives	18
7.1	.1 Designed Channel Classification and Wetland Type	
7.1	.2 Target Wetland Communities/Buffer Communities	
7.2	Sediment Transport Analysis	21
7.2	.1 Methodology	
7.2	.2 Calculations and Discussion	
7.3	HEC-RAS Analysis	25
7.3	.1 No-Rise, LOMR, CLOMR	
7.3	.2 Hydrologic Trespass	
7.4	Stormwater Best Management Practices	
7.4	.1 Site-Specific Stormwater Concerns	
7.5	Hydrologic Modification	

7.5.1	Narrative of Modification	26
7.6	Soil Restoration	26
7.7	Natural Plant Community Restoration	27
7.7.1	Reforestation Scheme	27
7.7.2	Planting Zones	28
7.7.3	Plant List	28
7.7.4	Plant Sources	29
7.7.5	Schedule	29
7.7.6	Stabilization	30
7.7.7	Site Preparation	30
7.7.8	Planting Review	30
7.7.9	Monitoring and Maintenance	30
8.0 Pe	rformance Criteria	30
8.1	Stream Success Criteria	30
8.2	Wetland Success Criteria	31
8.2.1	Hydrology	31
8.2.2	Vegetation	32
8.2.3	Soil	32
8.3	Vegetation Success Criteria	32
8.4	Schedule/Reporting	32
9.0 Re	ferences	34

Report Tables

Table 1:	Project Restoration Summary	ii
Table 2:	Mitigation Unit Summary	ii
Table 3:	Drainage Area and Stream Classification	2
Table 4:	Endangered Species — Stanly County	5
Table 5:	Ownership	6
Table 6:	Summary of Stream Classification	10
Table 7:	Project Site Streams Peak Discharges	11
Table 8:	Reference Stream Peak Discharges	13
Table 9:	Summary of Shear Stress Calculations	23
Table 10:	Summary of Existing Stream Power Calculations	24
Table 11:	Summary of Proposed Stream Power Calculations	25

10.0 **Restoration Tables**

Table I:	Project Enhancement/Restoration Structure and Objectives
Table II:	Drainage Area and Stream Classification
Table III:	Land Use of Watershed
Table IV:	Morphology Table
Table V:	Designed Vegetative Communities (By Zone)
Table VI:	Oxbow Wetland Seed Mix
Table VII:	Permanent Riparian Seed Mix

Figures 11.0

Figure 1:	Project Site Vicinity Map
Figure 2:	Project Site Watershed Map
Figure 3:	Project Site NRCS Soil Survey Map for Stanly County
Figure 4:	Project Site Map with Hydrological Features and Gauge Location
Figure 5:	Project Site Map with Wetland Delineation
Figure 6 and 7:	Reference Site Vicinity and Watershed Map
Figure 8:	Reference Site Streams and Wetlands NRCS Stanly County Soil Survey
Figure 9:	Reference Site Wetland Map with Gauge Location
Figure 10:	Reference Site Riparian Map
Figure 11:	Proposed Stream and Wetland Mitigation Features

Design Sheets 12.0

T1:	Title Sheet
LS1:	Legends and Symbols
EC01 – EC09:	Existing Conditions
D01 – D08:	Details
GN01:	Construction Sequence and General Notes
PP01 – PP25:	Plan and Profile Sheets
TYP01 – TYP03:	Typical Cross Sections
M01 – M04:	Morphology Table
PN01 – PN04:	Planting Notes
VP01 – VP09:	Planting Plans

Appendices 13.0

Appendix 1: Project Site Photographs

Appendix 2:	Project Site NCDWQ Stream Classification Forms
Appendix 3:	Project Site USACE Routine Wetland Determination Data Forms
Appendix 4:	Reference Site Photographs
Appendix 5:	Reference Site NCDWQ Stream Classification Forms
Appendix 6:	Categorical Exclusion Checklist
Appendix 7:	Stream Assessment
Appendix 8:	Sampled Stream Materials
Appendix 9:	Soil Water & Environment Group (SWE) Soil Analysis and Evaluation for Rockwell Site
	Wetland and Stream Mitigation Project Site
Appendix 10:	Hydrologic Gauge Data Summary, Groundwater and Rainfall Information

1.0 Project Site Identification and Location

1.1 Directions to Project Site

The Rockwell Pastures Stream and Wetland Restoration project (Site) is located 6 miles southeast of Albemarle in Stanly County, North Carolina. To drive to the Site from Raleigh, you take I-40 West and merge onto US-1 S towards Sanford. Then, you exit off U.S. 1 onto U.S. 501 S/U.S. 15 S. and continue on U.S. 501 S/U.S. 15 S until you merge onto NC-24 W/NC-27 S. Follow N.C. 24/N.C.-27 S and turn left onto Indian Mound Road/N.C. 1740. Take Indian Mound Road/ N.C. 1740 and then turn right onto Alpine Road. See **Figures 1** and **2** for the project vicinity and location maps.

1.2 USGS Hydrologic Unit Code and NCDWQ River Basin Designations

The project is located in the USGS Hydrologic Unit Code 03040104010020 and all of the project streams are located in the Yadkin Basin and the 03-07-08 NCDWQ sub-basin.

1.3 Project Vicinity Map

Please refer to **Figure 1** for the Site's vicinity map.

2.0 Watershed Characterization

2.1 Drainage Area

Table 3 provides hydrological and surface water classification information for the major project reaches.

Reach	Drainage Area (mi²)	Surface Water Classification	Stream Order
Onsite Reference (Upper UT4)	0.11	WS-IV	1
UT1-Upper	0.09	WS-IV	1
UT1-Middle	0.75	WS-IV	2
UT1-Lower	1.12	WS-IV	2
UT2	0.13	WS-IV	1
UT3	0.15	WS-IV	1
UT4-Upper	0.11	WS-IV	1
UT4-Middle	0.28	WS-IV	1
UT4-Lower	0.42	WS-IV	1
UT5	0.07	WS-IV	1
UT6	0.02	WS-IV	1
UT7	0.05	WS-IV	1

Table 3: Drainage Area and Stream Classification

2.2 Surface Water Classification/Water Quality

The North Carolina Division of Water Quality (NCDWQ) catalogs all the Site's streams as index number 13-10-(1) and classifies them as WS-IV streams. The WS-IV classification denotes a Water Supply IV that is highly developed. The Site's streams do not appear on the 2008 North Carolina 303(d) list of impaired waters.

Physiography, Geology, and Soils 2.3

The project area is located in the Carolina Slate Belt sub-ecoregion of the Piedmont ecoregion.

This sub-region extends from southern Virginia, across the Carolinas, and into a small part of eastern Georgia. The mineral-rich metavolcanic and metasedimentary rocks with slatey cleavage tend to be finer-grained and less metamorphosed than other parts of the Piedmont and are somewhat less resistant to erosion. In North Carolina, some parts of the region are more rugged and hilly. Trellised drainage patterns also occur in parts of the region. The volcanic-sedimentary rock formations include volcanic slates, basic and acid tuffs, breccias, and interbedded flows. The

volcanic slates are deeply weathered in places, forming clay and shale, and the soils generally have high silt contents. Georgeville and Herndon soils (fine, kaolinitic, thermic Typic Hapludults) are common.

The NRCS soil survey for Stanly County maps the following soils within the site: Badin channery silt loam, Ewon very strong loam, Kirksey silt loam, Oakboro silt loam, Tatum gravelly loam, and Tatum channery silt clay.

2.4 Historical Land Use and Development Trends

2.4.1 Historical Land Use

Historically, agricultural land and forests have dominated the landscape of the watershed. The land use has been split evenly between agriculture and forest (**Restoration Table III**).

2.4.2 **Development Trends**

The Site's primary landowners own almost the entire watershed draining into the project streams. The area lies within a rural setting and the landowners have not expressed an interest in developing the land within the watershed. There is potential for the Dennis property to secure a permanent farm conservation easement that would preclude future development of the upper half of the watershed.

2.5 Endangered/Threatened Species

Under the provisions of Section 7 of the Endangered Species Act (ESA) of 1973, as amended, federal law requires that any action likely to affect a federally protected species adversely be subject to review by the U.S. Fish and Wildlife Service (USFWS). The USFWS database (updated January 16, 2008) lists one federally endangered species for Stanly County: Schweinitz's sunflower (Helianthus schweinitzii). Yadkin River goldenrod (Solidago plumosa) and Georgia aster (Symphyotrichum georgianum) are identified as candidate species; however, these species do not receive federal protection. The bald eagle (Haliaeetus leucocephalus) is protected under the Bald and Golden Eagle Protection Act. Review of the Natural Heritage Program (NHP) database of documented occurrences did not reveal the presence of any of these species within a 1-mile radius of the proposed Site. Each species, its habitat, and its status are described in **Table 4**.

Schweinitz's Sunflower (Helianthus schweinitzii)

Schweinitz's sunflower is a perennial herb, usually 3 to 6 feet tall with yellow flowers that occur in late August to October. Schweinitz's sunflower is found in relatively open habitats such as roadsides, maintained rights-of-way, early successional fields, and woodland openings. Generally, Schweinitz's sunflower occurs on shallow, poorly drained, clayey and/or rocky soils.

Marginal habitat for Schweinitz's sunflower exists along the agricultural field edges at the Rockwell Pastures property; however, the frequent disturbance here makes these areas unfavorable. The majority of Site is used as open active agricultural fields, void of any native vegetation. The soils are predominantly deep and moderately to well-drained.

No occurrences of Schweinitz's sunflower have been documented in the NHP database within a one-mile radius of the proposed mitigation site and presence of this species has not been observed by Kimley-Horn biologists during site investigations conducted during Schweinitz's sunflower flowering season.

BIOLOGICAL CONCLUSION: NO EFFECT

Bald Eagle (Haliaeetus leucocephalus)

The bald eagle is a large raptor that typically inhabits the shorelines of large rivers, lakes, and ponds. Bald eagles construct nests in large trees near the shoreline and make use of the large water bodies for foraging.

Suitable habitat for bald eagle does not exist within the proposed mitigation areas, as there are no large bodies of water on or adjacent to the proposed project property. No occurrences of bald eagle have been documented in the NHP database within a one-mile radius of the proposed mitigation site and presence of this species or of suitable habitat for this species has not been observed by Kimley-Horn biologists during site investigations.

BIOLOGICAL CONCLUSION: NO EFFECT.

Yadkin River Goldenrod (Solidago plumosa)

Yadkin River goldenrod is a perennial herb, endemic to the Yadkin River in North Carolina. Currently, plants are known to exist in only two locations, within 2 kilometers of each other, along the shoreline of the Yadkin River. This species is listed as a candidate species by the USFWS.

Habitat for Yadkin River goldenrod does not exist on the Site due to the lack of flood scouring, the establishment and spread of invasive species, and the clearing of native vegetation for agricultural purposes. The majority of this site is used as open active agricultural fields, void of any native vegetation.

No occurrences of Yadkin River goldenrod have been documented in the NHP database within a 1mile radius of the proposed mitigation site. In addition, Kimley-Horn biologists have not observed the presence of this species during investigations.

BIOLOGICAL CONCLUSION: NO EFFECT

Georgia Aster (Symphyotrichum georgianum)

Georgia aster is a perennial herb distinguished by its large flower heads with dark purple rays up to 2 cm long. Disc flowers are white with purplish tips on the corollas. Blooms first appear in early

October and continue into mid-November. Georgia aster is found in dry open woods, roadsides, maintained rights-of-way, and woodland openings in dry oak-pine flatwoods and uplands in the state's Piedmont region. This species is most likely a relic of the post oak-savanna communities that existed in the region prior to fire suppression. Georgia aster is listed as a candidate species by the USFWS.

Marginal habitat for Georgia aster exists along the agricultural field edges at the Site where the frequent disturbances of the site mimic natural disturbances; however, the majority of this area is used as open active agricultural fields, void of any native vegetation.

No occurrences of Georgia aster have been documented in the NHP database within a 1-mile radius of the proposed Site, and presence of this species has not been observed by Kimley-Horn biologists during investigations. The USFWS lists the record status for Georgia aster as "historic," meaning the species was last observed in Stanly County more than 50 years ago.

BIOLOGICAL CONCLUSION: NO EFFECT

Common Name	Scientific Name	Habitat Requirement	State Status	Federal Status	Habitat Present
Schweinitz's Sunflower	Helianthus schweinitzii	Open habitats such as roadsides, maintained rights-of-way, early successional fields, and woodland openings. Generally occurs on shallow, poorly drained, clayey and/or rocky soils	E	E	No
Bald Eagle	Haliaeetus Ieucocephalus	Shorelines of large rivers, lakes, and ponds	Т	*	No
Yadkin River Goldenrod	Solidago plumose	Two known locations along the shoreline of the Yadkin River		С	No
Georgia Aster	Symphyotrichum georgianum	Dry open woods, roadsides, maintained rights-of-way, and woodland openings in dry oak-pine flatwoods and uplands in the state's Piedmont region		С	No

Table 4: Endangered Species — Stanly County

Notes: E=Endangered; T=Threatened; * Protected under the Bald and Golden Eagle Protection Act; C=Candidate species for listing

The State defines an endangered **plant species** as "any species or higher taxon of plant whose continued existence as a viable component of the State's flora is determined to be in jeopardy" (GS 19B 106: 202.12).

The State defines an endangered **animal species** as "any native or once-native species of wild animal whose continued existence as a viable component of the State's fauna is determined by the Wildlife Resources Commission to be in jeopardy or any species of wild animal determined to be an 'endangered species' pursuant to the Endangered Species Act" (Article 25 of Chapter 113 of the General Statutes; 1987).

2.6 Cultural Resources

A project scoping letter was sent to the State Historic Preservation Office (SHPO) on December 10, 2007 to request a review of the project for any potential impacts to cultural resources. SHPO's reply of on December 27, 2007 stated that it is not aware of any known historical resources within the project boundary that would be affected by the project. Copies of these letters are included as part of the categorical exclusion in Appendix 6.

2.7 Potential Constraints

2.7.1 **Property Ownership and Boundary**

The conservation easement for each unnamed tributary will be contained on one parcel. The table below provides the property owner and the easement area in acres.

Table 5: Ownership

Property Owner	Easement Area (sf)	Easement Area (acres)
Frank J. Dennis, Jr. and wife, Marie H. Dennis	9,923	0.23
Frank Dennis and wife, Wilma M. Dennis	846	0.02
Charles R. Dennis and wife, Rebecca W. Dennis	408,015	9.37
Dennis Farms, Inc.	871,080	20.00
Deese Family, LP	483,374	11.10
Reece Vane Deese and wife, Kathie Talbert Deese	379,308	8.71
Total	2,143,738	49.4

The property boundary is shown in **Figure 1** and the conservation easement boundary is shown in the **Restoration Plan Design Sheets**.

2.7.2 Site Access

Tributary UT1 could be accessed from several points where there are existing farm roads and driveways. It is anticipated that the upper part of UT1, UT5, and UT4 as well as the wetland restoration will be accessed using the main road through the Dennis farm. The lower part of UT1, UT2, UT3, and the restoration portion of UT7 will be accessed through the main road of the Reece farm. It is assumed that UT6 and the upper portion of UT7 will be accessed from the Dennis farm road. However, it also would be possible to access these streams from the main farm road.

2.7.3 Utilities

Hunsucker Surveying, P.A. located one overhead power line on the Site that has been excluded from the project with a 20 foot-wide corridor. The survey did not show an easement with this power line. The power line crosses UT4 and is assumed to serve a single residence. The site work contractor will be advised to contact North Carolina One Call prior to beginning any construction activity.

2.7.4 FEMA/Hydrologic Trespass

Based on the latest available flood mapping from NC Flood Maps, the site is outside of any mapped floodplains and should not be affected by any FEMA requirements.

There is a potential increase in flood elevations for all of the project site streams where Priority 1 restoration will be conducted. However, due to the confined nature of the stream valleys, any hydraulic trespass would potentially affect only the current landowners. No significant increase in flood elevations is anticipated. There are no anticipated downstream increases in flood elevation.

3.0 Project Site Streams

UT1 is a solid blue-line, second order stream based on the 1:24,000 USGS Topographic Map (see **Figure 2**). The channel has failing banks and is moderately to severely incised for most of its length. Much of the area of UT1 below its confluence with UT4 is open, active pasture except for a short length of approximately 375 feet of sparse woody vegetation at the bottom of the project. The presence of livestock and maintenance in the pasture have resulted in degraded and eroded stream banks. The upper portion of UT1 above the confluence with UT4 is located within active agricultural fields. Except for the 375-foot-section at the bottom of the project, the entire length of UT1 has been historically straightened and channelized, which . has contributed to the instability. The stream also is heavily sedimented. However, it does support a variety of aquatic life, including fish, crayfish, frogs, and macrobenthos. UT1 would alternately be classified as a Rosgen B and a Rosgen C with actively eroding bed and banks. The reach is considered perennial and appears to be fed by a number of headwater seeps (**Figure 4**). The perennial portion of UT1 scored from 30 in the upper reach to 48.5 on the lower reach on the NCDWQ Stream Classification Form.

UT2 is a first order stream based on the 1:24,000 USGS Topographic Map (**Figure 4**). The existing condition of UT2 is similar to that of UT1. It has been heavily impacted by livestock, is fed by an existing pond, and is a Bc channel. The stream is heavily sedimented, but contains aquatic life characteristic of perennial streams, including right-handed (gilled) snails, mayflies, bullfrog tadpoles, and minnows. The herbaceous buffer along the stream has been severely degraded by livestock access. The stream's . perennial portion scored a 32 on the NCDWQ Stream Classification Form. The low scoring of the stream is due to the impact from livestock (sedimentation and hoof-shear), which removed much of the geomorphic features that would normally be found in a stream this size.

UT3 is a small stream that has a perennial and an intermittent portion (**Figure 4**). UT3 has been heavily impacted by livestock and the buffer contains herbaceous vegetation. The short, upper portion of the stream is considered to be intermittent and would be considered an incised Rosgen E type channel. The intermittent portion is eroding and is subject to heavy sedimentation due to hoof shear and livestock access. The lower portion of the stream is alternately incised and sedimented with failing banks and has been degraded by livestock impacts such as hoof shear. The middle portion of this stream is sedimented by livestock damage to the point that it has lost its form. The entire perennial reach of the stream appears to have been historically straightened. The perennial portion scored a 43 on the NCDWQ Stream Classification Form.

UT4 is a first order stream based on the 1:24,000 USGS Topographic Map. The upper portion of the stream is impounded by three small ponds that are fed by a perennial spring. Below the ponds, the upper portion of the stream is relatively stable; however, it is overgrown with invasive species such as the Chinese privet (*Ligustrum sinense*) and multiflora rose (*Rosa multiflora*). This portion of the stream has an appropriate riffle-pool sequence.

The middle portion of UT4 has been impacted by silviculture. Except for a section of approximately 200 feet, the stream is extremely over-wide (width-to-depth ratio of approximately 79) and braided in most areas (see **Appendix 7** for cross sectional measurements). This has resulted in unstable banks, as the stream appears to frequently "wander" across the valley floor. It appears to have been heavily altered and the buffer recently has been removed. The area where a power line crosses the stream is excluded from the project site. Above this area is a small riparian wetland with mostly herbaceous vegetation.

The lower portion of the stream has been straightened and altered based on topographic and visual observation. Most of the banks are severely unstable as a result of the redirection of the channel. A strong and unstable head-cut separates the lower portion and middle portions of UT4. It appears to have been historically straightened. The buffers also have been cleared recently, leaving mostly sparse, new-growth vegetation. The geomorphic assessment of the lower portion of UT4 revealed that the stream is incised and is unstable because of the straightening and other alterations (see **Appendix 7**).

The upper portion of the stream scored a 35.5 using the NCDWQ Stream Classification Form and, as such, would be considered perennial for the entire length.

UT5 is located in an agricultural field and has been heavily impacted by crop production that has completely removed the buffers. Row crops are currently being planted to the stream edge resulting in heavy sedimentation. It also appears to have been straightened and channelized through periodic maintenance. The bed and banks are unstable. The stream scored a 28 on the NCDWQ rating form, making it an intermittent stream.

UT6 originates in an agricultural field and does not appear on a 1:24,000 USGS Topographic Map as a stream. The entire length is considered intermittent from its origin to its confluence with UT7. The stream is incised in its upper portions, but because of erosion and failing banks is sedimented in as the topography flattens and sediments are deposited. Row crops are being planted to the

edge of the stream resulting in heavy sedimentation. The stream scored a 28 on the NCDWQ rating form, making it an intermittent stream.

UT7 is bounded by an agricultural field and cutover forest along most of its upper portion above the confluence with UT6. The banks are unstable due to the lack of vegetation resulting in heavy sedimentation. It is also bounded by agricultural field and open pasture to just below its confluence with UT6. At this point, the stream becomes clearly perennial based on a NCDWQ score of 33 due to its lack of geomorphology, the found biology, and the fact that it is completely bounded by active pastureland that allows livestock access. The entire length of the stream appears to have been straightened. The upper portion is incised with failing banks. The lower portion becomes heavily sedimented as it enters the valley bottom and has been heavily impacted livestock access and hoofshear. The upper portion did score a 35 on the NCDWQ rating form.

3.1 Channel Classification

Kimley-Horn performed a geomorphic survey (cross sections, longitudinal survey, and pattern) and sampled stream materials (classification and entrainment pebble counts, bar samples, sub-pavement, and pavement samples) on several reaches representative of the geomorphic settings within the project area. Table 6 below summarizes the channel classifications of the surveyed reaches within the project area, and **Restoration Table IV** provides detailed morphological data.

Assessment Reach	Drainage Area (mi²)	Entrenchment Ratio	Abkf	Wbkf	Width/Depth Ratio	к	Slope	Stream Type
UT1-Upper	0.09					1.01	0.0173	B5
UT1-Middle	0.75	3.9	12.4	8.9	6.4	1.02	0.0086	E5
UT1-Lower	1.12	4.9	20.7	18.2	16.0	1.01	0.0090	C4
UT2	0.13	3.1	4.8	8.3	14.3	1.00	0.0281	B4c
UT3	0.15	2.4	6.5	6.3	6.1	1.04	0.0126	E4
UT4-Upper	0.11	2.7	4.2	7.3	12.6	1.05	0.0156	C4
UT4-Middle	0.28					1.03	0.0148	F4
UT4-Lower	0.42	10.7	9.9	7.4	5.5	1.02	0.0115	E4b
UT5	0.07	3.6	5.0	5.0	5.0	1.00	0.0186	E6
UT6	0.02	2.6	0.9	2.5	6.6	1.00	0.0162	E4/E5
UT7	0.05	2.0	1.0	2.8	8.0	1.01	0.0184	B5

Table 6: Summary of Stream Classification

3.2 Channel Discharge

The peak flows for the 2-, 10-, 25-, and 100-year storms using the North Carolina rural floodfrequency equations for the Blue Ridge/Piedmont Region (United States Geological Survey 2003) are shown in Table 7.

Assessment Reach	Area (acres)	Bankfull Discharge* (cfs)	2yr Q (cfs)	10yr Q (cfs)	25yr Q (cfs)	100yr Q (cfs)
UT1-Upper	57.6		24.9	67.8	101	165
UT1-Middle	480	40.5	110	276	395	622
UT1-Lower	717	72.8	125	311	445	698
UT2	83	18.9	32.2	86.5	128	208
UT3	96	23.0	35.6	95.1	140	228
UT4-Upper (ref)	70	23.6	28.7	77.5	115	188
UT4-Middle	179		55.2	144	209	336
UT4-Lower	269	21.1	73.4	188	272	433
UT5	45	20.9	20.9	57.4	85.6	141
UT6	13	2.0	8.7	25.1	38.2	64.6
UT7	32	2.1	16.5	46	68.9	115

Table 7: Project Site Streams Peak Discharges

*Calculated using Manning's equation and associated "n" value for stream type.

3.3 Channel Morphology

Most of the project's restoration reaches lack the appropriate dimension, pattern, and profile for their given valley types. These reaches were straightened and their buffers have been cleared and historically managed to maximize usable pasture and/or farmland. The channels are unstable and rarely exhibit defined riffle pool sequence and/or suitable aquatic habitat. The streams have become incised or hydrologically disconnected from the floodplains resulting in increased shear stress, velocity and the removal of hydrology from the historic adjacent riparian wetlands. **Restoration Table IV** shows complete channel morphology data including channel, pattern, dimension, and profile for all restoration and project reaches.

3.4 Channel Stability Assessment

The Site contains restoration reaches currently and historically used for pastures and farmland (Appendix 1). The vegetative buffers have been cleared and are currently open fields with some tree specimens along the banks. The streams also have been historically straightened to maximize usable land. Because of these conditions, most of the restoration reaches have down-cut, creating incised banks and accelerated bank erosion. Most of the project reaches lack the proper dimension, pattern, profile, and aquatic habitat.

Bank height ratios (that is, low bank height divided by the maximum bankfull depth) were determined for the surveyed reaches. In the methodology used for this report (Rosgen, 2001),

bank height ratios between 1.1 and 1.3 are considered "moderately unstable," ratios between 1.3 and 1.5 are considered "unstable," and bank height ratios greater than 1.5 are considered "highly unstable" (see Restoration Table IV).

3.5 Bankfull Verification

Determination of the bankfull elevation is vital to generating meaningful geomorphic values. There were sufficient bankfull indicators on-site such as benches, point bars, sediment deposits, and rack lines. The reach at the bottom of UT1 and a reach below the last dam on UT4 were used as reference streams. Cross sections of UT2 were also used to verify reference dimensions. The bankfull area values of all of the above project reaches were compared to the North Carolina Piedmont Rural regional curves (Harman, Jennings et al. 1999). The results indicate a general agreement between the three sets of values (site, references, and regional curve), thus providing a measure of validation (see Appendix 7).

3.6 Vegetation

The majority of the Site contains open agricultural row crops such as wheat or beans and pastureland. UT4 is surrounded by Loblolly pine (*Pinus taeda*) forest planted in rows for silviculture. The areas closest to the stream have been recently disturbed and colonized by herbaceous vegetation, including grasses, rushes and sedges, blackberry (*Rubus sp.*), multiflora rose, and Japanese honeysuckle (*Lonicera japonica*). However, there are a variety of woody species present, including Green Ash (*Fraxinus pennsylvanica*), Sycamore (*Platanus occidentalis*), Eastern red cedar (*Juniperus virginiana*), Chinese privet, inkberry (*Ilex glabra*), sweetgum (*Liquidambar styraciflua*), and hickory (*Carya spp.*). Of these species, multiflora rose, Japanese honeysuckle, and Chinese privet are considered invasive.

4.0 Reference Stream

4.1 Watershed Characterization

Two on-site reference reaches were surveyed for key geomorphological parameters (Figure 7). These areas were deemed to be relatively stable with riffle pool sequences appropriate for the stream and valley type. Both of these streams lie within in the same watershed. The upper UT4 reference stream is mostly wooded and includes a series of three small ponds. UT1 watershed is partially wooded and mostly in agriculture or pastureland. The reference site on UT1 will be used for the streams with drainage areas of greater than 0.25 square miles and similar valley type, the lower parts of UT1 and UT4. The upper UT4 reference will be used for the rest of the streams that have drainage areas of less than 0.25 square miles. Geomorphic data for dimension, pattern, and profile also was gathered on UT2 since it is relatively stable. A reference cross section was taken

on a section of UT2 that is stable in both profile and dimension. Even though there is a pond upstream of this reach, the amount of stormwater storage provided by the pond did not appear to be significant enough to invalidate the data provided from surveying this stable cross section. There is no riser outlet structure on the pond, so the pond functions like a very large pool. The watershed for UT2 is also partially cutover. The data gathered from these reaches corresponded very well with the regional curve data (see **Appendix 7**). Morphological data for design was collected only from the references on UT1 and UT4. The data gathered from UT2 was only used to help validate the local curve provided by UT1 and UT4.

4.2 Channel Classification

The upper UT4 reference reach is classified as a Rosgen C4 channel; the UT1 reference reach is classified as a Rosgen C4 channel; and the UT2 reach is classified as a Rosgen B4c channel. The reference stream morphology is included in **Restoration Table IV**.

4.3 Discharge

The peak flows for the 2-, 10-, 25-, and 100-year storms were modeled for the given drainage areas. These flows were calculated using the North Carolina DOT project design discharge charts.

Reference Reach	Area (ac.)	Bankfull Discharge (cfs)*	2yr Q (cfs)	10yr Q (cfs)	25yr Q (cfs)	100yr Q (cfs)
UT1-Lower (reference)	717	72.8	146.0	360.0	512.0	800.0
UT4-Upper (reference)	70	23.6	28.7	77.5	115.0	188.0

Table 8: Reference Stream Peak Discharges

*Calculated using Manning's equation and appropriate "n" for stream.

4.4 Channel Stability Assessment

During site inspections, the reference reach streams appeared stable with morphological measurements indicating stable dimension, pattern, and profile. These reaches are stable due to combination of vegetation along the banks; proper dimension, pattern, and profile; and access to an active floodplain. (See **Appendix 4** for photographs.)

4.5 Bankfull Verification

Determination of the bankfull elevation is vital to generating meaningful geomorphic values. There were sufficient bankfull indicators on-site such as benches, point bars, sediment deposits, and rack lines. To verify bankfull elevations, the bankfull area values for the project reference reaches were compared to the North Carolina Piedmont Rural regional curves (Harman, Jennings et al. 1999). The results indicate a strong agreement between reference reaches and regional curve data, thus providing a measure of validation (Appendix 7).

4.6 Vegetation

The riparian areas at this site should be a combination of Piedmont/Mountain bottomland forest, Piedmont/Mountain levee forest, and Piedmont/Low Mountain alluvial forest communities as described in the *Classification of the Natural Communities of North Carolina, Third Approximation* (Schafale and Weakley 1990). Two reference communities were located and are shown in **Figure 10**. Their species composition correlate well with the natural community types mentioned above. Common species in the natural communities include:

Acer floridanum, Acer negundo, Acer rubrum, Aesculus sylvatica, Asimina triloba, Betula nigra, Carpinus caroliniana, Carya cordiformis, Carya ovata, Celtis laevigata, Cornus amomum, Cornus florida, Corylus cornuta, Evonymus Americana, Fraxinus pennsylvanica, Ilex opaca, Juglans nigra, Lindera benzoin, Liquidambar styraciflua, Liriodendron tulipifera, Pinus taeda, Platanus occidentalis, Quercus imbricaria, Quercus michauxii, Quercus pagoda (falcata var. pagodaefolia), Ulmus americana, and Xanthorhiza simplicissima.

5.0 Project Site Wetlands

The project site includes three wetland areas (W1, W2, and W3 in **Figure 4**). Only W2 is jurisdictional and is described in section 5.1. W1 is a proposed non-riparian wetland restoration site. It is located west of UT6, but the two do not have any hydrologic interaction. The site also is located high enough in the valley where it does not have any relevant hydrological interaction with UT1. The site receives overland flow from two ephemeral drainage ways. It also appears to interact with the groundwater table and groundwater seepage. The site is currently in agriculture and has been ditched in two directions and crowned (see photo 15 of **Appendix 1**). There is a series of ditches and crowning running parallel to the valley and one swale running perpendicular to the valley that has resulted in the effective draining of the site. The soils analysis performed by a licensed soil scientist reveals the presence of relic hydric soil features (see **Appendix 9**). As such, the site is considered a drained wetland. W3 is located near upper UT1 outside of the project easement and will be used a reference for hydrology.

5.1 Jurisdictional Wetlands

UT4 flows through one jurisdictional wetland, W2 (see Figure 5). It was delineated following the guidelines presented in the 1987 U.S. Army Corps of Engineers Wetland Delineation Manual. The center of the wetland is located at -80 8.52, 35 16.63 degrees (NAD83) and covers 0.13 acres. This area is considered a low quality wetland because of a lack of appropriate bottomland hardwood forest tree species or non-riparian low elevation seep herbaceous species. This wetland will be enhanced through supplemental plantings. The stream restoration in this area should not alter the hydrology of the existing wetland because it will maintain the existing water table.

There were no other jurisdiction wetlands identified within the easement boundaries. However, jurisdictional wetlands may be established within the pond bottoms on UT4 after they are drained.

5.2 Hydrological Characterization

5.2.1 Groundwater Modeling

The on-site hydrological reference wetland, W3, has a similar position in the valley as W1, since it is a seep that discharges to UT1, but does not receive the majority of its groundwater hydrology from UT1. As such, the reference, W3, and restoration wetland, W1, are considered to be non-riparian. Although the soils are not mapped as the same type (Oakboro silt loam in the restoration wetland versus Kirksey silt loam in the hydrologic reference wetland) the soils are similar to those of the restoration area, W1. This allows the hydrologic reference to be used as a base for comparing quantitative criteria for a simplified hydrologic budget and to compare groundwater elevations using groundwater monitoring gages. Rainfall, groundwater, and surface water inputs from respective adjacent streams, evaporation, infiltration, and ground water flows should be relatively similar for the reference site and the proposed restoration/enhancement site. The ratio of wetland area to contributing drainage area can be used as a basis to determine as one indicator that the hydrologic inputs are sufficient for the proposed restoration. The reference wetland (not including the stream inputs) to wetland area is a ratio of 15.7:1. The ratio for the restoration area is approximately 10.5:1, which is similar in magnitude. This data helps verify that the source hydrology and groundwater would support these wetlands once the hydrologic modifications are returned to reference (i.e., ditches are removed, and adjacent channels are raised to historic or reference levels). It is assumed based on the position of the reference and restoration wetlands that the hydrologic input from the closest streams would not occur except in extreme flood events.

5.2.2 Surface Water Modeling

Since the restoration wetland is non-riparian, inputs from flooding will be considered negligible. A HEC RAS analysis will be performed for UT1, but will not be used to analyze the wetland restoration.

5.2.3 Hydrologic Budget

The proposed wetland restoration area receives hydrologic inputs through hill slope seepage, connection to the groundwater table, and surface runoff. The proposed wetland restoration site has been drained by bi-directional ditching designed to drain the wetlands and improve drainage for agriculture and pasture. The wetland area also has been crowned and tilled, which has removed the microtopography. These drainage improvements have led to the draining of seepage and upslope runoff, lowering of the local groundwater table, and reduction of the length of inundation.

5.3 Soil Characterization

Kimley-Horn has engaged Soil Water & Environment Group (SWE) to provide licensed soil scientist services. SWE personnel investigated the project site to confirm NRCS soil survey mapping data for the wetland restoration location, record detailed soil descriptions for the restoration areas representing different landscape positions across the site, and to determine the extent of hydric soils for the purpose of wetland restoration site criteria. A series of hand augerings were performed across selected areas of the proposed wetland restoration site at maximum depths of approximately 18 to 24 inches. Detailed soil descriptions including depth of horizon, color, texture, structure, and consistence were recorded (Appendix 9). For areas where relic redoximorphic features occur at a depth of greater than 12 inches due to site disturbance from farming, minor grading of less than or equal to 6 inches would most likely result in a change to more hydric conditions and an elevated water table. Typically, wetland areas include soils that have a matrix with chroma 1 or 2 within the upper 12 inches.

5.3.1 **Taxonomic Classification**

See **Appendix 9** for the taxonomic report performed by SWE on March 9, 2007.

5.3.2 **Profile Description**

See **Appendix 9** for the taxonomic report performed by SWE on March 9, 2007.

5.3.3 Hydraulic Conductivity

According to the soil survey for Stanly County, the soils found onsite in the wetland restoration and hydrological reference area are moderately well drained and are moderately to slowly permeable. Saturated hydraulic conductivity (Ksat) is moderately rapid to rapid in the stratum and rapid to very rapid in the substratum. The index of surface runoff is negligible. Flooding is occasional to frequent with very brief duration.

5.4 Plant Community Characterization

The plant communities in the restoration wetland areas W1 and W3 are currently in agriculture (winter wheat). The plant community for W2 was mostly herbaceous grass, rush and sedge species. There are also Loblolly pine, Tag alder (*Alnus serrulata*), Chinese privet, and Blackberry.

6.0 Reference Wetland

6.1 Hydrological Characterization

The hydrological reference wetland area, W3, is fed by hill slope seepage, runoff, and a connection to the groundwater table.

6.2 Soil Characterization

For the purposes of the restoration, wetland W2 will be used for soil characterization, as the soil characteristics will be most similar to the restoration site. The soil characteristics are described in Section 5 (above).

6.2.1 Taxonomic Classification

See Section 5 (above).

6.2.2 Profile Description

See Section 5 (above).

6.2.3 Hydraulic Conductivity

See Section 5 (above).

6.3 Plant Community Characterization

6.3.1 Community Description

The wetland areas at this Site are non-riparian low elevation seep communities as described in *Classification of the Natural Communities of North Carolina, Third Approximation* (Schafale and Weakley 1990). Common species in these communities include: *Saururus cernuus, Impatiens capensis, Osmunda cinnamomea, Osmunda regalis, Boehmeria cylindrica, Rudbeckia laciniata, Ranunculus recurvatus, Chelone glabra, Juncus spp., and Saxifraga micranthidifolia* (Schafale and Weakley 1990). These communities also include occasional species from bottomland hardwood forests.

7.0 Project Site Restoration Plan

7.1 Restoration Project Goals and Objectives

The overall goal of this project is to effectively provide functional uplift to an entire watershed by restoring or enhancing most of the stream, wetland, and riparian areas within the watershed. The actions we plan to take to accomplish this goal will improve water quality, ecological function, and habitat and will include:

- Removing excess nutrients and sediment through the use of vegetative buffers
- Increasing dissolved oxygen concentrations through the use of in-stream structures and the turbulence they produce in pools
- Stabilizing the stream bank using natural channel design techniques
- Improving substrate through the use of structures and the elimination of major sediment sources from the stream
- Creating habitat diversity by introducing woody structures such as log vanes and/or root wads
- Reducing temperature by restoring canopy in the buffer areas
- Reconnecting streams to their adjacent floodplains and wetlands
- Raising groundwater levels in adjacent streams by raising adjacent channel bed elevation
- Removing/plugging ditches used to drain historic wetlands
- Creating micro-topography by regrading and ripping wetlands
- Breaking up historically compacted soils by cattle to allow the groundwater to come to the surface and wetland vegetation to flourish
- Improving crossings by replacing pipes and/or stabilizing outfalls
- Controlling the invasive exotics by removing them during construction
- Preserving stable on-site streams, wetlands, and riparian buffers draining into the enhancement/restoration reaches
- Excluding livestock through fencing
- Re-vegetating the stream banks, wetlands, and riparian area to improve bio-diversity and ecology
- Providing all of the above in order to restore riparian functions to the entire watershed.

Site-Specific Stream Treatments

UT1 — In order to provide functional uplift to UT1, we have divided the stream work to be performed into four types of treatment. The uppermost portion will be treated using Enhancement

Level II to establish stability. Most of the remaining reaches of the stream will be treated using restoration since the stream is incised and has been historically straightened (based on morphological data gathered and information provided by the landowners). Restoring these sections of stream using a Priority 1 restoration technique will re-connect the stream with its historical floodplain, restoring the functions of the riparian buffer. One exception to this approach is the lowest portion (approximately 375 feet) that is not incised and has a thin wooded buffer. This area will be treated using Enhancement Level II that may include some minor bank grading. The other exception is the reach along the upper portion just above the main farm road where property constraints will only allow the use of buffer planting, benches and grade control structures to provide an improved cross section and bedform (profile) step/pool features. In this section, the eastern bank of the stream will only have a 10-25 foot buffer. This concession to the landowners was necessary to secure the entire stream corridor. Enhancement Level I credit will be sought for this section.

UT2 — This small perennial stream is accessible to livestock and is located immediately below a large farm pond at the toe of a hill. The stream does not appear to have been relocated and has a relatively stable and natural morphology with a boulder substrate. As such, livestock will be fenced from the stream and native forest vegetation will be established to provide 50-foot buffers. This treatment is considered to be Enhancement Level II.

UT3 — This small perennial stream with a short intermittent section at the top. The geomorphic assessment revealed that the perennial portion of the stream does not provide appropriate dimension, pattern, or profile. It also appears to have been historically straightened. Additionally, the stream is accessible to livestock that have heavily degrading it by hoof shear and animal waste. Fully restoring this channel will provide uplift by stabilizing the stream and by providing improved stream habitat. Additionally, livestock will be excluded from the stream by fencing.

UT5 and UT6 — These small intermittent streams are located in agricultural fields. Since these systems are relatively small, it is anticipated that they can be stabilized by re-establishing a woody riparian buffer. As such, we are proposing Enhancement Level II for these streams. Providing a riparian buffer to the intermittent portions of the above streams will protect the downstream areas by removing sedimentation sources and by providing shading to reduce temperature. The stream banks along UT5 and UT6 are unstable due to agriculture and mowing down to the stream edge. A forested buffer will provide filtering for sediments and shading to reduce temperatures.

UT4 — The uppermost portion of this stream includes three small spring fed ponds. The stream will be restored through these ponds by partially removing the dam structure and allowing the stream channel to be re-established in the pond bottom. The approach is to establish the lowest, presumably flat, portions of the existing pond bottoms as the flood plain and to create a channel with the appropriate dimension, pattern, and profile. Our experience is that this approach minimizes sediment loss and rapidly re-establishes the stream and riparian corridor.

Immediately below the ponds and for a short section just above and below the existing road, the stream channel is stable with undercut banks and an appropriate riffle/pool sequence. However,

there are invasive species that are to be removed and replanted with native tree species. As such, this treatment is considered to be Enhancement Level II.

Between the above reaches, there is a reach that had been impacted by the farmer on numerous occasions using earth-moving equipment. This reach has multiple threads in some locations and the main part of the stream switches channels or forms new channels from time to time (i.e. the streams are laterally unstable). The reaches also have excessively wide width to depth ratios and are overly shallow in areas with bedrock. This area will receive a combination of Restoration and Enhancement Level I treatment by blocking the multi-threaded areas, building benches using single or double wing deflectors, and adding appropriate bed-form features using log and rock vanes. The goal of this approach is to re-create a single thread channel with an appropriate width to depth ratio that is laterally stable and has better formed riffle-pool complexes. This will greatly improve habitat and reduce sedimentation. There is a large headcut on UT4 above the confluence with UT5. From this point down, the stream is incised and highly eroded and will be restored using Priority 1 stream restoration techniques. UT4 will also be placed back into its natural valley as it enters the Reese property. The existing channel had been relocated to the west.

UT7 — This stream is intermittent above the confluence with UT6. The intermittent reach has a rocky substrate that is sedimented. Providing Enhancement Level II treatment to this portion will provide functional uplift to this biologically important stream. Providing a riparian buffer to the intermittent portions of the above streams will protect the downstream areas by removing sedimentation sources and by providing shading to reduce temperature.

The perennial reach below the confluence with UT6 has been strongly impacted by hoof-shear and nutrient inputs from livestock access. However, because of this and the fact that the stream has been historically straightened, it lacks proper dimension, pattern, and profile and will be restored using Priority 1 restoration techniques. This reach will also be fenced to exclude livestock.

Non-Riparian Wetland Restoration

The proposed non-riparian wetland restoration plan includes the restoration of 1.7 acres of nonriparian wetlands. The plan will target the restoration of a non-riparian low elevation seep (Schafale and Weakley 1990). Based on the location of the restoration site, the main source of hydrology is from seepage and overland flow. The site is currently being drained by a pattern of ditches that will be filled. Crowning will be removed and micro-topography re-established. Separate reference wetlands for hydrology and vegetation are located on-site and plantings are based on natural communities described in Shafale and Weakley (Schafale and Weakley 1990).

7.1.1 Designed Channel Classification and Wetland Type

The restored stream sections of UT1, UT3, UT4, and UT7 are proposed as Rosgen C or E streams. The Enhancement Level I and Level II sections of UT1, UT2, UT4, UT5, UT6 and UT7 are proposed as Rosgen B, C or E streams (see **Restoration Table IV**). The wetland restoration is proposed as a non-riparian low elevation seep wetland.

7.1.2 Target Wetland Communities/Buffer Communities

The riparian areas at this site are designed to be a combination of piedmont/mountain bottomland forest, piedmont/mountain levee forest, and piedmont/low mountain alluvial forest communities and the wetlands are proposed to be a non-riparian low elevation seep (Schafale and Weakley 1990).

7.2 Sediment Transport Analysis

7.2.1 Methodology

The shields curve was used to calculate the sediment transport for UT1, UT3, UT4, and UT7 because their stream bed substrate is a gravel-like material and the stream slope is steep on several of the reaches. Sediment transport was calculated using shear stress equations and shields curve to verify that the designed channel will be able to transport its bedload at bankfull without aggrading or degrading. The shields curve was used for the initiation of particle movement and to estimate the range of particles transported for a given shear stress.

Stream power was also assessed to check for unacceptable increases or decreases in stream power that could signify potential problems with the proposed channels ability to transport its sediment load. Stream power was calculated using the shear stress equation multiplied by the stream velocity to verify that the designed channel would be able to transport its bedload at bankfull without degrading.

Two physical characteristics of the channel design that affect the stream power of the channel are the slope of the channel and hydraulic radius. The shear stress equation is as follows:

τ = γRsWhere: τ= shear stress (lb/ft²) γ = specific gravity of water (62.4 lb/ft³) R = hydraulic radius (ft) s = water surface slope (ft/ft)

The hydraulic radius equals the cross sectional area divided by the wetted perimeter.

$$R = \frac{A}{P}$$
Where: R = hydraulic radius
A = cross-sectional area (ft2)
P = wetted perimeter (ft)

To determine the velocity of the existing and proposed channels the Manning's equation was used:

$$v = \frac{k}{n} \left(\frac{A}{P}\right)_{(2/3)} \sqrt{S}$$

Where: $v = velocity (ft/s)$
 $k = 1.49 \text{ (constant)}$
 $n = roughness coefficient$
 $A = cross-sectional area (ft2)$
 $P = wetted perimeter (ft)$
 $S = average stream slope (ft/ft)$

The stream power of the channel is equal to the shear stress multiplied by the velocity.

Ps = TV Where: Ps = stream power (lbs/ft*s) T = shear stress (lb/ft2) V = velocity (ft/s)

7.2.2 Calculations and Discussion

UT1, UT3, UT4, and UT7 were designed with mean depths and slopes sufficient to transport a range of particles. These channels are designed to eliminate bank erosion, flush fine particles, and transport the characteristic sediments. The characteristic sediments were determined by analyzing bed materials in comparative streams with less impacted watersheds. **Table 9** provides the results of the sediment transport calculations using the shear stress equation and Shields curve. The results show that the proposed channel should transport a range of materials that includes the existing or characteristic channel materials.

Restoration Reach	Proposed Slope (ft/ft)	Proposed Hydraulic Radius (ft)	Shear Stress (Ib/ft²)	Particle Transport Size* (mm)
UT1-Upper	0.0159	0.48	0.48	27.2
UT1-Middle	0.0071	1.02	0.45	25.5
UT1-Lower	0.0085	1.10	0.58	34.7
UT2				
UT3	0.0103	0.65	0.42	23.1
UT4-Upper	0.0185	0.55	0.63	38.4
UT4-Middle	0.0147	0.82	0.75	46.6
UT4-Lower	0.0122	0.90	0.69	41.9
UT5				
UT6				
UT7	0.0099	0.45	0.28	15.2

Table 9: Summary of Shear Stress Calculations

The stream power was evaluated on all stream reaches. According to studies by Brookes (1991), streams with power values less than 1.0 ft-lb/sec/ft² fail to transport some of the finer particles such as sand. On the other hand, streams with power values greater than 3.4 ftlb/sec/ft² will erode the channel. UT1 upper is slightly below 1.0 at 0.93 ft-lb/sec/ft², but does not have unusually large sediment loads consisting of sandy material. Tables 10 and 11 provide the results.

Assessment Reach	Existing Slope (ft/ft)	Existing Hydraulic Radius (ft)	Existing Shear Stress (Ib/ft²)	Existing Stream Power (Ibs/ft*s)
UT1-Upper	0.0173	0.59	0.64	2.01
UT1-Middle	0.0086	1.18	0.63	1.51
UT1-Lower	0.009	1.09	0.61	2.16
UT2	0.0299	0.55	1.03	3.79
UT3	0.0126	0.86	0.68	2.38
UT4-Upper	0.0185	0.52	0.60	3.14
UT4-Middle	0.0148	0.33	0.30	1.07
UT4-Lower	0.0115	1.11	0.80	3.22
UT5	0.0186	0.82	0.95	3.98
UT6	0.0162	0.34	0.34	0.74
UT7	0.0184	0.29	0.33	0.69

Table 10: Summary of Existing Stream Power Calculations

Assessment Reach	Proposed Slope (ft/ft)	Proposed Hydraulic Radius (ft)	Proposed Shear Stress (Ib/ft²)	Proposed Stream Power (Ibs/ft*s)
UT1-Upper	0.0159	0.48	0.48	1.44
UT1-Middle	0.0071	1.02	0.45	1.50
UT1-Lower	0.0085	1.10	0.58	2.13
UT2				
UT3	0.0103	0.65	0.42	1.25
UT4-Upper	0.0185	0.55	0.63	2.27
UT4-Middle	0.0147	0.82	0.75	3.12
UT4-Lower	0.0122	0.90	0.69	2.77
UT5				
UT6				
UT7	0.0099	0.45	0.28	0.63

 Table 11: Summary of Proposed Stream Power Calculations

7.3 HEC-RAS Analysis

A HEC-RAS model (v. 4.0) was run to analyze the existing and proposed conditions of the project streams.

A Priority 1 stream approach was used for UT1, UT3, UT4 and UT7 to restore dimension, pattern, and profile. An Enhancement Level 1 approach was used for sections of UT4 and UT1. These approaches result in raising the streambed, creating an overall localized net rise in elevation throughout the restoration areas. For the proposed stream, the channels are designed so that the bankfull and higher flow events flood out of the channel and hydrate the surrounding floodplain.

The enhancement level II reaches of UT1, UT2, UT4, UT5, UT6 and UT7 do not raise the streambed elevations and therefore do not result in any rise in flood elevations throughout the restoration areas.

The lower reach of UT4 will be relocated back to its original valley location with a priority 1 restoration approach. This will increase the flooding frequency for this localized floodplain.

7.3.1 No-Rise, LOMR, CLOMR

None of the streams are located in FEMA mapped areas. Therefore no CLOMR, LOMR, or No-Rise certification will be required for this project.

7.3.2 Hydrologic Trespass

There is an increase in flood elevations for UT1, UT3, UT4, and UT7. All project reaches drain into David's Creek and the increase in on-site flood elevations will not increase the flood elevations of David's Creek/Lake Tillery, and, therefore, will not cause any hydrologic trespass to anyone downstream. The increase in flood elevations also is isolated to the project parcels and will not increase flood elevations upstream.

7.4 Stormwater Best Management Practices

7.4.1 Site-Specific Stormwater Concerns

The project site is situated in a rural setting. It is anticipated that the re-established riparian buffer will be a sufficient filter and treat any stormwater runoff from the adjacent fields. Non-jurisdictional areas where concentrated stormwater flows enter the easement will be captured in no-maintenance BMPs (vernal pools/level spreaders) created by grading. There are no other site-specific stormwater concerns.

7.5 Hydrologic Modification

7.5.1 Narrative of Modification

Hydrologic modifications to the non-riparian wetland restoration area will result from a combination of plugging of existing drainage ditches, removing field crowns, and providing microtopography to improve surface water infiltration.

Key hydrological components for the project's wetlands include inputs from over-land flow, groundwater seepage, infiltration of (micro-)ponded waters, and the balance of groundwater inflows and outflows. The local groundwater elevations and the balance of groundwater inflows and outflows will be increased by the removal of field crowns and removal of field ditches. The jurisdictional wetland and other potential riparian wetland "restoration" areas will be hydrologically enhanced by rising of the stream channels (in some locations), which will elevate the groundwater table and increase the frequency of overbank flooding.

7.6 Soil Restoration

Soils within the riparian restoration areas will be treated to facilitate the growth and development of plantings. The soils will be ripped or otherwise appropriated treated prior to planting to break up compacted soils and create a favorable environment for new plants. Plant nutrients and soil

amendments will be applied to the soils if deemed necessary based on the soils test report performed by the North Carolina Department of Agriculture and Consumer Services Agronomic Division for sample sites located throughout the project area.

7.7 Natural Plant Community Restoration

The goal of the riparian restoration is to provide long-term improvements to ecological functions of the existing forest community. The Restoration Plan Design Sheets have been developed to provide these functional uplifts through the re-establishment of targeted natural communities. The targeted natural communities were determined by comparing existing site conditions to established communities and verifying appropriate species in the proximate reference natural communities. Based on Classification of the Natural Communities of North Carolina, Third Approximation (Schafale and Weakley 1990), the site's riparian area most closely correlates to piedmont/mountain bottomland forest, piedmont/mountain levee forest, and piedmont/low mountain alluvial forest communities and the wetland community most closely correlates to non-riparian low elevation seep.

7.7.1 **Reforestation Scheme**

The goal of the planting scheme is to establish a riparian community consistent with the reference community, using an approach that accelerates the successional process and leads to a mature riparian community. The planting plan will use the reference plant communities discussed in the previous paragraph as a base for designing a planting scheme and developing a vegetation list.

Recolonization of cleared riparian habitats characteristically begins with the invasion of a pioneer species that creates an environment (e.g. shading) suitable for species typically found in a mature community. To initialize the proposed riparian community, the restoration area will be planted with a mix of pioneer and climax species that have been selected and arranged to meet the following objectives:

- Establish mix of shade-intolerant canopy and shade-tolerant understory species
- Provide vegetative source of dominant species
- Establish local seed sources for those species less likely to migrate into the restoration area
- Stabilize disturbed or high stress areas

Two planting zones have been developed considering site hydrology, soils, and disturbance regimes and are referenced to natural communities. Each zone has a unique environment that dictates species selection and community structure. A planting list has been developed for each zone to match the vegetation in the reference community and meet the objectives given above. The planting list only includes species that are readily available and have a reasonable expectation of survival. For a given zone and species, a plant source and planting type are

recommended. Then, a planting schedule is developed so that site preparation and plant installation occur at the optimal time and season. After installation, the planting will be verified. Finally, a maintenance plan is developed to promote long-term success of the planting. The planting plan components are described below in more detail.

7.7.2 **Planting Zones**

The planting plan includes five zones of distinct vegetative composition and structure.

- Zone 1 Stream Channel and Banks (2.37 acres)
- Zone 2 Riparian (41.74 acres)
- Zone 3 Wet (4.24 acres)
- Zone 4 – Oxbow Wetland (0.61 acres)

The zones are mapped on the **Restoration Plan** and are described below.

Zone 1 – Stream Channel and Banks

The stream channel and banks zone includes the stream bank from base flow to bankfull. The zone features the steepest slopes (3 to 8%) of the zones and highest saturation levels. The most stressed areas are located on the outside bends of meanders. This environment dictates the planting of fast-growing, obligate pioneer species to provide stability to areas at or below bankfull.

Zone 2 – Riparian

The riparian zone encompasses the area from Zone 1 to the edge of the easement. Zone 2 is an area exposed to regular stream flows and frequent soil deposition.

Zone 3 - Wet

The wet zone includes pockets of wetter areas within zone 2 and the non-riparian wetland restoration area.

Zone 4 – Oxbow Wetlands

Oxbow wetlands include shallow ponded areas created from channels abandoned in the stream design. These areas will have standing water for extended periods and will be planted with a herbaceous wetland seed mix.

7.7.3 Plant List

The plant list (see **Restoration Table V**) is based on the target community, reference community, and recommendations from the North Carolina Stream Restoration Institute (Hall 2001) and the North Carolina Ecosystem Enhancement Program (Smith 2004). The selection of species also depends on availability from local nursery sources.

7.7.4 Plant Sources

The planting plan preferentially selects local genetic stock and uses three sources of plants. Two sources — nursery stock and on-site transplants — will be tied directly to the initial planting and will be used in numbers that will meet permit guidelines. The remaining source — recruitment — is factored into the selection of species on the plant list, as the plant list includes a significant portion of species not likely to become established from natural propagation.

Nursery Stock

The planting plan may include any of the following nursery stock forms of woody species: bare roots, containerized seedlings, and ball and burlap. Additionally, the plan may use sod or seeds from commercial sources. The planting plan prescribes that nursery stock be grown under environmental conditions similar to the target environment. The planting list includes alternates in case specific species of pre-ordered plants are not available or acceptable for installation.

On-Site Transplants

Several favorable species grow within the existing site. In the course of constructing a new channel alignment, some individual plants may need to be removed. The individuals of a target species that are of an appropriate size and age may be transplanted into the restoration area.

Recruitment

It is expected that the restoration sites will be populated with species from adjacent communities. The sites will be maintained to keep the number of unwanted species at less than 10% of the total population.

7.7.5 Schedule

The planting plan will be scheduled around stream construction activities and growing season. Special attention will be given to stabilizing disturbed areas that include newly constructed channels and temporary construction easements. The final vegetation planting will occur after proper site preparation (described below) and during the appropriate season.

Plantings may be staggered based on surrounding activities. Live stake planting on stream banks (Zone 1) will closely follow after channel construction to provide immediate stabilization. On-site transplants will be planted immediately after they are removed from their existing habitat. Planting of Zones 2-4 will occur from late winter to early spring, after construction, to minimize or eliminate threats from the construction, exotic vegetation treatment, and/or unpredictable weather.

7.7.6 **Stabilization**

Immediately after construction, the stream banks and all disturbed areas will be seeded with permanent and temporary seed mixes. If the season is appropriate, permanent seeding will be completed in conjunction with construction, and temporary seeding will be applied according to Land Quality Section requirements. Within the stream channel (Zone 1), pioneer species that provide immediate bank stabilization will be planted. Live stakes and bare roots will be planted around structure installations and the outsides of meander bends to provide an area of highdensity root mass. Coir fiber matting and live stakes will be used along the entire reach of the restored channels to provide stabilization until vegetation can be established.

7.7.7 Site Preparation

Prior to planting the riparian buffer, efforts will be made to eradicate fescue and invasive plants such as multiflora rose, Chinese privet, and Japanese honeysuckle. A permanent seed mix can be used after application of the pre-emergent, and woody planting can follow during the dormant season.

7.7.8 **Planting Review**

After the final planting is complete, the planting supervisor will verify that the site was properly planted using stem counts and condition inspection. The planting contractor will be responsible for replacing damaged plants.

7.7.9 **Monitoring and Maintenance**

Monitoring will verify that the restoration area is meeting restoration goals. Damaged plants will be removed and if the planting survival fails to meet restoration goals, replanting will occur. If monitoring indicates that an area is trending toward greater than 10% coverage by nuisance vegetation, that area will be treated to remove the nuisance vegetation.

8.0 Performance Criteria

8.1 Stream Success Criteria

The stream geometry will be considered successful if the cross-section geometry, profile, and sinuosity are stable or reach a dynamic equilibrium. It is expected that there will be some changes in the designed cross sections, profile, and/or substrate composition. Changes that may occur during the monitoring period will be evaluated to determine whether they represent a trend toward a less stable condition (e.g., down cutting, erosion, etc.) or are simply an increase in stability (e.g., settling, vegetative changes, coarsening of bed material, etc.).

An initial, though not exclusive, indicator of success will be the stream's adherence to design or reference ratios of stream geometry found in the morphological tables (**Restoration Table IV**) or in

Kimley-Horn

comparable stable reference systems. The channel may not adhere to design or reference ratios of stream geometry, but can be considered stable if the following key indicators are present:

• Stream Type: Maintenance of the design stream type or progression toward or conversion to a stable stream type such as B, C, or E will indicate stability.

 Bank Height Ratio: Bank height ratio between 1.0 and 1.2 will indicate that flood flows have access to the active floodplain and that higher flows do not apply excessive stresses to stream banks.

Stream channel geometry will be assessed each year during the monitoring period using monitoring locations established during the as-built evaluation (see section 8.4). The assessment includes permanent cross sections and longitudinal profiles of the restored reaches. Photographs will be taken for each cross section, vegetation quadrants, and permanent photo points. The restored reaches will be visually assessed for channel and in-stream structure stability. Channel materials will be sampled for at least six cross sections.

Determination of true bankfull may be difficult until the stream has had adequate flooding events to create strong bankfull indicators. A minimum of two bankfull events is required during the 5-year monitoring period. If two bankfull events do not occur the monitoring period may be extended at the discretion of the Corps of Engineers.

If a large storm event occurs before the woody vegetation has been established, isolated bank erosion may occur in sections where the flood-prone area has been restricted by topography. Areas of bank erosion will be repaired as necessary.

The middle section of UT4 and the upper section that are currently impounded will receive a nontypical stream restoration treatment described in Section 7.0. In these cases the stream cross sections, profile and pattern will not necessarily be constructed to the typical cross section, profile and pattern measurements provided in the morphological measurements table and typical plans. However, it is anticipated that these areas will form naturally and remain stable during the process.

8.2 Wetland Success Criteria

The success of wetland restoration will be measured by comparing the restored wetlands with similar, more functional wetlands with respect to vegetation, soils, and hydrology. Success criteria is summarized in the following sections.

8.2.1 Hydrology

Success of the restoration of wetland hydrology will be measured by improvements to the frequency and duration of saturated soils compared to the reference wetland. Successful wetland hydrology is defined as the saturation of soils for a period equal to or greater than 85% of the period measured in the reference wetland. The minimum requirement for the restoration wetland hydrology will be the USACE guidelines (United States Army Corps of Engineers,

1987) including saturation of the upper surface of the soils for 7% of the growing season. The hydroperiod of the reference wetland will be measured using groundwater gauges.

8.2.2 Vegetation

The prevalent vegetation should consist of macrophytes that typically are adapted for life in saturated soil conditions. These species should have the ability to grow, compete, reproduce, and persist in anaerobic soil conditions. For the restoration areas, study plots showing that the composition and density of vegetation in the restoration areas that compare to the reference areas will indicate restoration success for vegetation.

8.2.3 **Soil**

A primary measure of the enhancement and restoration of wetland soils will be the establishment of hydric character as defined by USACE guidelines (United States Army Corps of Engineers 1987). Soil enhancement and restoration also may be inferred based on successful enhancement and restoration of wetland hydrology and vegetation.

8.3 Vegetation Success Criteria

The success of riparian and vegetation planting will be gauged by stem counts of planted species. Stem counts of more than 320 trees per acres after three years, and 260 trees per acre after five years will be considered successful. Photos taken at established photo points should indicate maturation of riparian vegetation community.

8.4 Schedule/Reporting

The monitoring plan to evaluate the success of the stream restoration project is based on guidance provided by The Stream Mitigation Guidelines disseminated by the United States Army Corps of Engineers – Wilmington District (McLendon, Fox et al. 2003) and recommendations from the Ecosystem Enhancement Program (EEP). The collection and summarization of monitoring data will be conducted in accordance with the version of the EEP documents titled "Content, Format, and Data Requirements for EEP Monitoring Reports" stated in the RFP.

Upon completion of the restoration project, an as-built evaluation will be conducted that documents the following conditions:

- Geomorphology (dimension, pattern, and profile)
- Channel materials
- Channel stability and in-stream structure functionality
- Vegetation
- Wetland hydrology (gauge settings)

Kimley-Horn and Associates, Inc. The survey of channel dimension will consist of permanent cross sections placed at approximately two cross sections per unique stream segment. The cross sections will represent riffles and pools with a majority of the cross sections assessing riffles. Annual photographs showing significant site features will be taken from permanent, mapped photo points. The survey of the longitudinal profile will represent distinct areas of restoration and will cover at least 3,000 linear feet of channel per reach. The profile survey will include pattern measurements and include all permanent cross sections. Channel material measurements will be collected by using pebble counts for at least six of the permanent cross sections.

The entire restored length of stream will be investigated for channel stability and in-stream structure functionality. Any evidence of channel instability will be identified, mapped, and photographed. All structures will be inventoried for functionality and photographed.

Wetland hydrology will be measured using groundwater gauges installed on-site and within the reference sites. The gauges will sample groundwater elevations continuously throughout the monitoring period.

Successful restoration of the vegetation on a stream and wetland mitigation site is dependent upon hydrologic restoration, active planting of preferred canopy species, and volunteer regeneration of the native plant community. In order to determine if the criteria are achieved, vegetation monitoring quadrants will be installed throughout the restoration site. The number of quadrants required will be based on the species/area curve method with a minimum of at least three quadrants. The cumulative size of installed quadrants will cover approximately 1.0% of the restoration site. The individual quadrants will be 0.01 hectare (100 square meters) in size. Vegetation monitoring will occur in spring after leaf-out has occurred. Individual quadrant data will be provided and will include diameter, height, density, and coverage quantities. Relative values will be calculated and importance values will be determined. Individual seedlings will be marked such that they can be found in succeeding monitoring years. Mortality will be determined by the difference between the previous year's living planted seedlings and the current year's living planted seedlings. At the end of the first growing season, species composition, density, and survival will be evaluated. For each subsequent year, until the final success criteria are achieved, the restored site will be evaluated between July and November.

The monitoring will occur annually for five years. The monitoring period should include two separate years with bankfull events. Bankfull events will be verified using an installed crest gauge that will be inspected during each monitoring visit. If a bankfull event has not been documented by the end of the second year of monitoring, a mandatory quarterly check will be required. If there are not two bankfull events, the monitoring period may be extended at the discretion of the Corps of Engineers, Raleigh Regulatory Field Office Project Manager and the NCDWQ 401-Wetlands Unit. Monitoring reports will be submitted during every year for years 1-5.

9.0 References

Hall, Karen (2001). Recommended Native Plant Species for Stream Restoration in North Carolina. Raleigh, NC, North Carolina Stream Restoration Institute NCSU.

Harman, William A., Gregory D. Jennings, et al. (1999). <u>Bankfull Hydraulic Geometry</u> <u>Relationships for North Carolina Streams</u>. Wildland Hydrology Symposium, Bozeman, MT, AWRA.

McLendon, Scott, Becky Fox, et al. (2003). Stream Mitigation Guidelines. United States Army Corps of Engineers - Wilmington District, United States Environmental Protection Agency, North Carolina Wildlife Resources Commission and North Carolina Department of Natural Resources -Division of Water Quality.

Rosgen, David L. (2001). A Stream Channel Stability Assessment Methodology. <u>Seventh Federal</u> <u>Interagency Sedimentation Conference</u>. Reno, NV. w: 18-26.

Schafale, Michael P. and Alan D. Weakley (1990). <u>Classification of the Natural Communities of</u> <u>North Carolina, Third Approximation</u>, NC Natural Heritage Program, Division of Parks and Recreation, NC Department of Environment, Health, and Natural Resources.

Smith, Cherri L. (2004). Guidelines for Riparian Buffer Restoration. Raleigh, NC, North Carolina Department of Environmental and Natural Resources - Ecosystem Enhancement Program.

United States Geological Survey (2003). The National Flood-Frequency Program.

10.0 Restoration Tables

Table I: Project Enhancement / Restoration Structure and Objectives	

Assessment Reach ¹ (Design Reach)	Station Range	Mitigation Type	Priority Approach (Rosgen)	Existing Linear Footage	Designed Linear Footage
UT1-Upper	100+00 to 102+92	Enhancement Level II		292	292
UT1-Upper	103+32 to 107+68	Restoration	Ι	416	436
UT1-Upper	107+68 to 116+31	Enhancement Level I		868	863
UT1-Upper	116+70 to 134+00	Restoration	Ι	1,304	1,729
UT1-Middle	134+00 to 154+50	Restoration	Ι	2,055	1,999
UT1-Lower	154+50 to 169+80	Restoration	Ι	1,405	1,496
UT1-Lower	169+80 to 174+14	Enhancement Level II		409	409
UT2	200+00 to 206+35	Enhancement Level II		635	635
UT3	300+00 to 308+72	Restoration	Ι	717	872
UT4-Upper	400+00 to 407+49	Special Restoration	I/II		749
UT4-Upper	480+00 to 480+72	Preservation		72	72
UT4-Upper	407+36 to 411+00	Enhancement Level II		364	364
UT4-Upper	411+00 to 415+06	Enhanc Level I/Restoration		400	406
UT4-Middle	415+06 to 417+73	Enhancement Level II		245	245
UT4-Middle	417+73 to 433+00	Enhanc Level I/Restoration		1,489	1,557
UT4-Middle	433+00 to 436+37	Restoration	Ι	327	337
UT4-Lower	436+37 to 449+26	Restoration	Ι	1,127	1,289
UT5	500+00 to 510+75	Enhancement Level II		1,075	1,075
UT6	600+00 to 611+73.89	Enhancement Level II		1,174	1,174
UT7	700+00 to 707+30	Enhancement Level II		730	730
UT7	707+30 to 714+39.41	Restoration	Ι	583	689
W01		Restoration			1.7 (acres)

Table II: Drainage Area and Stream Classification

Reach	Drainage Area (mi ²)	Surface Water Classification	Stream Order
UT1-Upper	0.09	WS-IV	1
UT1-Middle	0.75	WS-IV	2
UT1-Lower	1.12	WS-IV	2
UT2	0.13	WS-IV	1
UT3	0.15	WS-IV	1
UT4-Upper (onsite reference)	0.11	WS-IV	1
UT4-Middle	0.28	WS-IV	1
UT4-Lower	0.42	WS-IV	1
UT5	0.07	WS-IV	1
UT6	0.02	WS-IV	1
UT7	0.05	WS-IV	1

Table III: Existing Land Use / Land Cover of the Watershed

	Coverage
Land Cover	1998
Agriculture	49%
Forest	51%

Rockwell Pastures

<form> Image: mart Image: mart</form>	VARIABLES	Onsi	te Reference UT4 ³	e Reach	Exi	sting UT1 l	Jpper		nal Curves P sgen Refere			Design Reacl		Exis	sting UT1 Middle		al Curves Pi sgen Referer		[Design Reach UT1-Middle	Exis	ting UT1 L	ower		al Curves Pie gen Referen		[Design Reach UT1-Lower
	STATION				1	0+00 to 44+	+00				10	3+03 to 134+	+00	4	4+00 to 63+00				13	4+00 to 154+50	63+	-00 to 81+7	3.57				154-	+50 to 174+27.66
Image Image <t< td=""><td><u> </u></td><td>-</td><td>C4</td><td></td><td></td><td>B5</td><td></td><td></td><td>C/E</td><td></td><td></td><td>B5</td><td></td><td></td><td>E5</td><td></td><td>C/E</td><td></td><td></td><td>C4</td><td></td><td>C4</td><td></td><td></td><td>C/E</td><td></td><td></td><td>C4</td></t<>	<u> </u>	-	C4			B5			C/E			B5			E5		C/E			C4		C4			C/E			C4
N N N N N N <	2. Drainage Area		0.11			0.09			0.09			0.09			0.75		0.75			0.75		0.90			0.9			0.9
Image: bold Image: bold Image: bold Image: bold <		Mean:	_	7.3	Mean:		N/A ²	Mean:		1.2	Mean:		.3	Mean:		Mean:		.5	Mean:		Mean:		8.2	Mean:		.4	Mean:	16.6
No No No No No <td></td> <td>Ū</td> <td></td> <td></td> <td>0</td> <td></td> <td></td> <td>Ŭ</td> <td></td> <td></td> <td>0</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td><u> </u></td> <td></td> <td>0</td> <td></td> <td></td> <td>Ŭ</td> <td></td> <td></td> <td><u> </u></td> <td></td>		Ū			0			Ŭ			0					-			<u> </u>		0			Ŭ			<u> </u>	
D D			-				1	1		.7		1						.4					I.1 	-	1			1.1
Image: bold in the serie i		-		2.6	0			- V		5.1	•		2.7			-		.7	, v		0		6.0					14.6
Image: book in the standing in the stan		-			Ŭ			Ŭ				2		•		-			<u> </u>		Ŭ			Ŭ			<u> </u>	
D D </td <td></td> <td></td> <td></td> <td>1</td> <td></td> <td>1</td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>.0</td> <td></td>				1		1			_			1						.0										
I P <td< td=""><td>7. Bankfull Mean Velocity</td><td></td><td>-</td><td>1</td><td>_</td><td>1</td><td>N/A²</td><td>_</td><td>_</td><td>3.8</td><td>_</td><td><u> </u></td><td></td><td>_</td><td></td><td>_</td><td>1</td><td>.1</td><td>_</td><td></td><td>_</td><td>-</td><td></td><td>_</td><td></td><td>1</td><td></td><td>3.7 3.3 2.5</td></td<>	7. Bankfull Mean Velocity		-	1	_	1	N/A ²	_	_	3.8	_	<u> </u>		_		_	1	.1	_		_	-		_		1		3.7 3.3 2.5
I Norw Norw Norw No	8. Bankfull Discharge ¹ , cfs	-				1	N/A ²	Ŭ		5.7				•		•		.4	<u> </u>		0			ů ů		.5	<u> </u>	69.0
Image	1	-						Ű								Ũ			U U		0						-	62.4 46.6
1 <td< td=""><td>9. Bankfull Maximum Depth (d_{max})</td><td></td><td>+</td><td></td><td>-</td><td>1</td><td>N/A²</td><td>_</td><td></td><td></td><td>_</td><td>1</td><td>.8</td><td>_</td><td></td><td></td><td></td><td></td><td>_</td><td></td><td>_</td><td></td><td>2.0</td><td>_</td><td></td><td></td><td></td><td>1.6</td></td<>	9. Bankfull Maximum Depth (d _{max})		+		-	1	N/A ²	_			_	1	.8	_					_		_		2.0	_				1.6
	10. Max d _{max} /d _{bkf}	-		1.9	Ū	1	N/A ²	Ŭ	1				.6	Ŭ		-	1		Ŭ		Ū		1.7		1.		Ŭ,	1.4
<td< td=""><td></td><td></td><td></td><td></td><td>U U</td><td></td><td> N/A²</td><td></td><td>1.2</td><td>1.5</td><td>Ŭ.</td><td></td><td>.6</td><td>U U</td><td></td><td></td><td>1.2</td><td>1.5</td><td></td><td></td><td></td><td> 1</td><td></td><td>- J-</td><td>1.2</td><td>1.5</td><td>U U</td><td></td></td<>					U U		 N/A ²		1.2	1.5	Ŭ.		.6	U U			1.2	1.5				1		- J-	1.2	1.5	U U	
No No No No No </td <td></td> <td>-</td> <td>+</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1 1</td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td>		-	+									1 1			1						_		1					
Nav </td <td></td> <td></td> <td></td> <td>0.1</td> <td></td> <td></td> <td>1</td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td>r</td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td></td> <td></td> <td>_</td> <td></td> <td>9.0</td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td>206.0</td>				0.1			1	1					r				-	-			_		9.0	-	-	-		206.0
New New New New New <td>(ipu)</td> <td>0</td> <td></td> <td>2.7</td> <td></td> <td></td> <td></td> <td>- V</td> <td></td> <td></td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td>Ű</td> <td></td> <td>-</td> <td>, v</td> <td></td> <td></td> <td></td> <td>1.9</td> <td></td> <td></td> <td></td> <td>Ŭ.</td> <td>43.0 369 12.4</td>	(ipu)	0		2.7				- V			•					Ű		-	, v				1.9				Ŭ.	43.0 369 12.4
I I	(W _{fpa} /W _{bkf})	Ū			0											Ű											. J.	
15 Source 10 1	14. Meander Length						1						r				-						1					190.9 149.4 232.4
14 1 <	15. Ratio of Meander Length to		-								•					-			, v		0			*			Ŭ.	11.5
Image: marrier Image: marrier Sa Tabel marrier Sa Tabel marrier Sa Tabel marrier Sa Tabel marrier Sa Sa <td></td> <td>-</td> <td></td> <td></td> <td>Ű</td> <td></td> <td></td> <td></td> <td>9.0</td> <td>14.0</td> <td>•</td> <td></td> <td></td> <td>•</td> <td></td> <td>Ű</td> <td>9.0</td> <td>14.0</td> <td>- V</td> <td></td> <td>Range:</td> <td></td> <td></td> <td>Ů,</td> <td>9.0</td> <td>14.0</td> <td>~</td> <td>9.0 14.0</td>		-			Ű				9.0	14.0	•			•		Ű	9.0	14.0	- V		Range:			Ů,	9.0	14.0	~	9.0 14.0
Image: binding (Ampling) Strange O Image: Ampling Strange: Ampling Strange: Ampling			-	1			1					· · · · · · · · · · · · · · · · · · ·									_		1	-				45.7 41.5 49.8
12. beg <td></td> <td>-</td> <td></td> <td>-</td> <td></td> <td>I</td> <td>NA²</td> <td></td> <td></td> <td>-</td> <td></td> <td><u> </u></td> <td>-</td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td>_</td> <td>-</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>2.8</td>		-		-		I	NA ²			-		<u> </u>	-				1				_	-				-		2.8
I Image Norme <	1 0 547	~			Ũ				2.5	3.0	•			Ū	-	Ű	2.5	3.0	· · · · · · · · · · · · · · · · · · ·						2.5	3.0		2.5 3.0 66.4
Marci Name A Range Range A Ra<			3.2	5.7								1								45.0 75.0	_		1					49.8 83.0
12 Submit (Alling Lage) Range n=1 Main 1 → T Main Main Main Main Main Main <td>To: Modifidor Widdi Radio</td> <td>-</td> <td></td> <td></td> <td></td> <td>I</td> <td>NA²</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>NA²</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>_</td> <td></td> <td>1</td> <td></td> <td></td> <td>-</td> <td></td> <td>4.0 3.0 5.0</td>	To: Modifidor Widdi Radio	-				I	NA ²			-					NA ²			-			_		1			-		4.0 3.0 5.0
11 1 dings Space (Srige) Mare: 0.0173 Mare: Mare: 0.0173 Mare: Mare: Mare: 0.0173 Mare:	20. Sinuosity (k)	Mean:			Mean:		1	Mean:	5.0		Mean:	1.(08	Mean:		Mean:		-		1.09		1.	.01	Mean:		-	Mean:	1.08
Im <td></td> <td>U</td> <td></td> <td></td> <td><u> </u></td> <td></td> <td>-</td> <td><u> </u></td> <td></td> <td></td> <td><u> </u></td> <td></td> <td></td> <td><u> </u></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td><u> </u></td> <td>1.00 1.10 0.0092</td>		U			<u> </u>		-	<u> </u>			<u> </u>			<u> </u>								-	-				<u> </u>	1.00 1.10 0.0092
I <t< td=""><td>(ft/ft)</td><td>Range:</td><td></td><td></td><td>Range:</td><td>0.0135</td><td>0.0447</td><td>Range:</td><td></td><td></td><td>Range:</td><td>0.0135</td><td>0.0447</td><td>Range:</td><td>0.0046 0.0114</td><td>Range:</td><td></td><td></td><td>Range:</td><td>0.0046 0.0114</td><td>Range:</td><td>0.0076</td><td>0.0190</td><td>Range:</td><td></td><td></td><td>Range:</td><td>0.0076 0.0190</td></t<>	(ft/ft)	Range:			Range:	0.0135	0.0447	Range:			Range:	0.0135	0.0447	Range:	0.0046 0.0114	Range:			Range:	0.0046 0.0114	Range:	0.0076	0.0190	Range:			Range:	0.0076 0.0190
128 Befine Supple Mean: 0.0074 <t< td=""><td></td><td>-</td><td></td><td>1</td><td>_</td><td></td><td></td><td>L</td><td></td><td>1</td><td>_</td><td>1</td><td></td><td>_</td><td></td><td>_</td><td></td><td></td><td>_</td><td></td><td>_</td><td>0.0</td><td>1</td><td>-</td><td>1</td><td></td><td></td><td>0.0085</td></t<>		-		1	_			L		1	_	1		_		_			_		_	0.0	1	-	1			0.0085
24. Raise of Artifie Soles Ox_myS_mi Range: 1 Nean: N/A ² Range: 1.5 Nean: Nean:<								-					279			-	-	-	U U		•	0.0	1	-		-	-	0.0149
Indep Single 0.4 3.2 Range: 1.5 1.5 2.0 Range: 1.5 0.0 Man: 0.000 Range:		-	0.0064	0.0493				-				0.0239	0.0318	Range:		-			Ŭ	0.0106 0.0141				-			-	0.0127 0.0170
25 Pod Slope Man: 0.010 Man: N/A ² Man: N/A ² Man: 0.007 Man: N/A ² Man: 0.007 Man: N/A ² Man: 0.007 Man: 0.007 Man: 0.007 Man: 0.007 Man: N/A ² Man: 0.007 Man: 0.007 Man: 0.007 Man: 0.007 Man: Man: Man: Man: 0.007 Man: Man: 0.007 Man: 0.007 Man: Man:<			0.4	3.2			1					1.5	2.0	Range:						1.5 2.0					1. 1.5	2.0		1.8 1.5 2.0
Action Ac		Mean:			Mean:	١	N/A ²		_	-				Mean:			-	-					-					0.000
Sipe (Space/Small Range: 0.0 0.		-				N		-								-			-					-			-	0.0000 0.0008
Image Rage 1.4 1.5 Rage 1.6 Rage <td>Slope (S_{pool}/S_{avg})</td> <td>Range:</td> <td>-</td> <td>1</td> <td>Range:</td> <td>1</td> <td>1</td> <td>Range:</td> <td></td> <td></td> <td>Range:</td> <td></td> <td>1</td> <td>Range:</td> <td></td> <td></td> <td></td> <td>0.0 0.1</td>	Slope (S _{pool} /S _{avg})	Range:	-	1	Range:	1	1	Range:			Range:												1	Range:				0.0 0.1
28. Ratio of Pool Depth to Avg. Mean: 2.5 Mean: NA ² Mean: 3.0 Mean:		-	-	1		1	1	1	-	1		1					1			1			1	-	-	-		3.3
Image Image <t< td=""><td>· · · · · · · · · · · · · · · · · · ·</td><td>-</td><td></td><td></td><td>-</td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td>-</td><td></td><td></td><td>-</td><td></td><td>-</td><td></td><td></td><td>-</td><td></td><td></td><td>-</td><td></td></t<>	· · · · · · · · · · · · · · · · · · ·	-			-			-						-		-			-		-			-			-	
Mage: Ange: Range: Range: <	Depth (d _{pool} /d _{bkf})				Range:			Range:	2.5	3.5	Range:			Range:		Range:			Range:		0			Range:	2.5	3.5	· ·	
All of Pool Width to Bankfull Width (W _{pool} /W _{bkl}) Range: ···· Mean: NA ² Mean: ····· Mean: ······ Mean: ······ Mean: ······ Mean: ······ Mean: ······· Mean: ········ Mean: ·········· Mean: ············ Mean: ····································		-		1		1		1	-	1		1			1		1						1	-	l I			26.8
And the and th	30. Ratio of Pool Width to	J						-	1	.5				•		-	1	.5	Ŭ		J			-	1.	5	Ŭ	1.6
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		-			•			-			•			•		-					0			-			-	
All Mean: N/A ² Mean: - Mean: 2.5 Mean: 0.8 Mean: - Mean:		-		1		1	1		_	1		1			1								1		-			42.7
		Mean:	1	1.0	Mean:	1	1	Mean:		1	Mean:	1		Mean:		Mean:							1	Mean:				2.3
33. Pool to Pool Spacing Mean: 20.8 Mean: N/A ² Mean: Mean: 31.5 Mean: 54.6 Mean: Mean: 67.5 Mean: 104.1 Mean: Mean:	Bankfull Area (A _{pool} /A _{bkf}) 33. Pool to Pool Spacing	Range: Mean:	21	0.8	Range: Mean:			Range: Mean:			Range: Mean:			Range: Mean:		Range: Mean:			Range: Mean:		Range: Mean:			Range: Mean:			Range: Mean:	
(p - p) Range: 17.6 24.1 Range: Range: Range: 25.2 37.8 Range: 35.9 65.4 Range: Range: 45.0 90.0 Range: 68.8 179.7 Range: Range: 49.0	(p - p)	Range:	17.6	24.1	Range:			Range:			Range:	25.2	37.8	Range:	35.9 65.4	Range:			Range:	45.0 90.0	Range:	68.8	179.7	Range:			Range:	49.8 99.6
34. Ratio of Pool to Pool Spacing Mean: 2.9 Mean: N/A^2 Mean: 4.5 Mean: 6.1 Mean: 6.0 Mean: 6.1 Mean: 4.5 Mean: 6.0 Mean: 6.0 Mean: 6.1 Mean: 6.0 Mean: 6.0 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td>4.5 3.0 6.0</td>							1																					4.5 3.0 6.0

Used Manning's Equation: Existing "n" values - mean n = 0.0425, low range n = 0.050, high range n = 0.035
 Proposed "n" values - mean n = 0.038, low range n = 0.042, high range n = 0.034

 Stream has been historically ditched and straightened. Typical pattern and profile features were not observed on this reach during the geomorphic assessment.

 Onsite Reference Reach average stream slope determined using survey information.

Rockwell Pastures

VARIABLES	Onsite	e Reference UT4 ³	e Reach		Existing UT	2		al Curves Pi gen Referer		1	Existing UT	3		nal Curves Pi sgen Referer		[[Design Reac UT3	h		nal Curves Piedm sgen Reference V			esign Reach UT4 Upper
STATION				20-	+00 to 26+34	4.58				30-	+00 to 37+16	6.55				300-	+00 to 308+7	2.42					+00 to 415+06
1. Stream Type		C4			B4c			C/E			E4			C/E			C5			C/E			C4
(Rosgen) 2. Drainage Area		0.11		-	0.13			0.13			0.15			0.15			0.15			0.11			0.11
(sq. mile) 3. Bankfull Width	Mean:		7.3	Mean:		.3	Mean:	0.13	0	Mean:		.3	Mean:	0.13	3	Mean:	8.0	3	Mean:	4.5	M	ean:	7.4
(W _{bkf})	Range:	'		Range:		.5	Range:		.5	Range:			Range:		.5	Range:	0.1		Range:			ange:	
4. Bankfull Mean	Mean:	0).6	Mean:	0	.6	Mean:	0	.8	Mean:	1	.0	Mean:	0	.8	Mean:	0.	7	Mean:	0.7	M	ean:	0.6
depth (d _{bkf})	Range:			Range:			Range:			Range:			Range:			Range:			Range:			ange:	
5. Width/Depth Ratio (W _{bkt} /d _{bkf})	Mean: Range:		2.6	Mean: Range:		4.3	Mean: Range:	6	.3	Mean: Range:		.1	Mean: Range:		.4	Mean: Range:	12	.7	Mean: Range:	6.2		ean: ange:	12.9
6. Bankfull cross-sectional	Mean:		4.2	Mean:		.8	Mean:	5	.4	Mean:		.5	Mean:	5	.9	Mean:	5.		Mean:	4.7		ean:	4.2
Area (Abkf)	Range:			Range:			Range:			Range:			Range:			Range:			Range:		Ra	ange:	
7. Bankfull Mean Velocity	Mean:		5.6	Mean:		.9	Mean:	3		Mean:		.5	Mean:	3	.9	Mean:	3.		Mean:	3.8		ean:	3.6
(V _{bkf}) 8. Bankfull Discharge ¹ , cfs	Range: Mean:	5.2	6.1 3.6	Range: Mean:	3.3	2.6 3.9	Range: Mean:	20).5	Range: Mean:	3.0	4.3 3.0	Range: Mean:	22		Range: Mean:	2.7	3.3	Range: Mean:	17.8		ange: ean:	3.2 4.0 15.1
(Q _{bkf})	Range:	21.7	25.8	Range:	16.1	12.7	Range:			Range:	19.6	28.0	Range:			Range:	15.7	19.4	Range:			ange:	13.7 16.9
9. Bankfull Maximum Depth	Mean:	1	.1	Mean:	1	.1	Mean:	-	-	Mean:	1	.4	Mean:	-	-	Mean:	1.	1	Mean:		M	ean:	0.9
(d _{max})	Range:			Range:			Range:			Range:			Range:			Range:			Range:			ange:	
10. Max d _{max} /d _{bkf} ratio	Mean: Range:	1	.9	Mean: Range:	1	.8	Mean: Range:	1.2	.4 1.5	Mean: Range:		.3	Mean: Range:	1.2	.4 1.5	Mean: Range:	1.	6 	Mean: Range:	1.4		ean: ange:	1.6
11. Low Bank Height to max	Mean:		1.0	Mean:		.0	Mean:		- 1.5	Mean:		.5	Mean:	1.2	-	Mean:	1.0		Mean:			ean:	1.0
d _{bkf} ratio	Range:			Range:			Range:			Range:			Range:			Range:			Range:		Ra	ange:	
12. Width of Flood Prone	Mean:		0.1	Mean:		5.8	Mean:		-	Mean:		5.0	Mean:	-		Mean:	234		Mean:			ean:	37.2
Area (W _{fpa}) 13. Entrenchment Ratio	Range: Mean:	2		Range: Mean:		 .1	Range: Mean:			Range: Mean:	2		Range: Mean:			Range: Mean:	23.8	446	Range: Mean:			ange: ean:	20.2 55.2 5.0
(W _{foa} /W _{bkf})	Range:			Range:			Range:			Range:			Range:			Range:			Range:	+		ange:	
14. Meander Length	Mean:	1:	3.6	Mean:	55	5.2	Mean:	-	-	Mean:	40	0.5	Mean:	-	-	Mean:	98	.9	Mean:			ean:	85.1
(L _m)	Range:	10.2	17.0	Range:	54.1	56.2	Range:			Range:	33.7	47.4	Range:			Range:	77.4	120.4	Range:		Ra	ange:	66.6 103.6
15. Ratio of Meander Length to	Mean:		1.9	Mean:		.7	Mean:		.5	Mean:		.4	Mean:	11		Mean:	11.		Mean:	11.5		ean:	11.5
Bankfull Width (L _m /W _{bkf}) 16. Radius of Curvature	Range: Mean:	1.4	2.3	Range: Mean:	6.5	6.8	Range: Mean:	9.0	14.0	Range: Mean:	5.4	7.5	Range: Mean:	9.0	14.0	Range: Mean:	9.0	14.0	Range: Mean:	9.0		ange: ean:	9.0 14.0 20.4
(R _c)	Range:	5.3	12.6	Range:	9.9	42.3	Range:			Range:	1.8	19.4	Range:			Range:	21.5	25.8	Range:			ange:	18.5 22.2
17. Ratio of Radius of Curvature	Mean:		1.2	Mean:		.9	Mean:	2	.8	Mean:		.6	Mean:	2	.8	Mean:	2.		Mean:	2.8		ean:	2.8
to Bankfull Width (R _c /W _{bkf})	Range:	0.7	1.7	Range:	1.2	5.1	Range:	2.5	3.0	Range:	0.3	3.1	Range:	2.5	3.0	Range:	2.5	3.0	Range:	2.5	3.0 Ra	ange:	2.5 3.0
18. Belt Width	Mean:	-	1.4	Mean:		.4	Mean:		-	Mean:		.8	Mean:	-		Mean:	34		Mean:			ean:	29.6
(W _{blt}) 19. Meander Width Ratio	Range: Mean:	3.2	5.7 0.6	Range: Mean:	7.3	9.5 .0	Range: Mean:	4		Range: Mean:	6.4	5.3	Range: Mean:	4		Range: Mean:	25.8	43.0	Range: Mean:	4.0		ange: ean:	22.2 37.0 4.0
(W _{blt} /W _{bkt})	Range:	0.4	0.8	Range:	0.9	1.1	Range:	3.0	5.0	Range:	1.0	0.8	Range:	3.0	5.0	Range:	3.0	5.0	Range:			ange:	3.0 5.0
20. Sinuosity (k)	Mean:	1	.05	Mean:		00	Mean:		-	Mean:		.04	Mean:	-	-	Mean:	1.1		Mean:			ean:	1.06
(Stream Length / Valley Length) 21, Valley Slope (Sv _{alley})	Range: Mean:		 0173	Range: Mean:	1.00	1.00 282	Range: Mean:			Range: Mean:	1.00	1.05	Range: Mean:			Range: Mean:	1.14	1.17	Range: Mean:			ange: ean:	1.02 1.15 0.0197
(ft/ft)	Range:			Range:			Range:			Range:			Range:			Range:	0.0035	0.0392	Range:			ange:	0.0016 0.0637
22. Average Stream Slope ³	Mean:	0.0	0156	Mean:	0.0	281	Mean:	-	-	Mean:	0.0	126	Mean:	-	-	Mean:	0.01	03	Mean:			ean:	0.0185
$(S_{avg}) = (S_{valley}/k)$	Range:			Range:			Range:			Range:			Range:			Range:			Range:			ange:	
23. Riffle Slope (S _{riff})	Mean: Range:	0.0	0.0493	Mean: Range:	0.0	450 0.0900	Mean:		-	Mean:	0.1	500	Mean: Range:			Mean: Range:	0.01	81 0.0207	Mean: Range:			ean: ange:	0.0324
24. Ratio of Riffle Slope to Avg.	Mean:		0.0493	Mean:		.6	Range: Mean:		.8	Range: Mean:		2.0	Mean:		.8	Mean:	0.0155		Mean:	1.8		ean:	1.8
Slope (S _{riffle} /S _{avg})	Range:	0.4	3.2	Range:	0.6	3.2	Range:	1.5	2.0	Range:			Range:	1.5	2.0	Range:	1.5	2.0	Range:	1		ange:	1.5 2.0
25. Pool Slope	Mean:		0100	Mean:		090	Mean:		-	Mean:		170	Mean:	-	-	Mean:	0.0		Mean:			ean:	0.000
(Spool)	Range:	0.0078	0.0136	Range:	0.0026	0.0250	Range:			Range:	1		Range:			Range:	0.0000	0.0010	Range:			ange:	0.0000 0.0019
26. Ratio of Pool Slope to Avg. Slope (S _{oool} /S _{avo})	Mean: Range:	0.5	0.9	Mean: Range:	0.0	.0 0.1	Mean: Range:	0.0	.0 0.1	Mean: Range:		.4	Mean: Range:	0.0	.0	Mean: Range:	0.0	0.1	Mean: Range:	0.0		ean: ange:	0.0
27. Maximum Pool	Mean:		1.5	Mean:		.4	Mean:		-	Mean:		.3	Mean:	- 0.0		Mean:	2.		Mean:			ean:	1.9
Depth (d _{pool})	Range:	1.4	1.5	Range:			Range:			Range:			Range:			Range:			Range:			ange:	
28. Ratio of Pool Depth to Avg.	Mean:		2.5	Mean:		.4	Mean:	3		Mean:		.3	Mean:	3		Mean:	3.		Mean:	3.0		ean:	3.3
Depth (d _{pool} /d _{bkf}) 29. Pool Width	Range: Mean:		 1.1	Range: Mean:	8		Range: Mean:	2.5	3.5	Range: Mean:		 1.5	Range: Mean:	2.5	3.5	Range: Mean:	16		Range: Mean:	2.5		ange: ean:	
	Range:			Range:			Range:			Range:			Range:			Range:			Range:	1		ange:	
30. Ratio of Pool Width to	Mean:).6	Mean:		.0	Mean:	1		Mean:		.8	Mean:		.5	Mean:	1.		Mean:	1.5		ean:	1.9
Bankfull Width (W _{pool} /W _{bkf})	Range:			Range:			Range:	1.3	1.7	Range:			Range:	1.3	1.7	Range:			Range:			ange:	
31. Pool Area	Mean:	-	4.4	Mean:		.0	Mean:		-	Mean:		.6	Mean:	-		Mean:	15		Mean:			ean:	11.6
(A _{pool}) 32. Ratio of Pool Area to	Range: Mean:	1		Range: Mean:	1	.5	Range: Mean:			Range: Mean:	1	.5	Range: Mean:			Range: Mean:	2.		Range: Mean:			ange: ean:	
Bankfull Area (A _{pool} /A _{bkf})	Range:		-	Range:			Range:			Range:			Range:			Range:			Range:	1		ange:	
33. Pool to Pool Spacing	Mean:		0.8	Mean:		1.6	Mean:		-	Mean:		6.0	Mean:	-		Mean:	38.		Mean:			ean:	33.3
(p - p) 34. Ratio of Pool to Pool Spacing	Range: Mean:	17.6	24.1 2.9	Range: Mean:	10.0	41.5 .0	Range: Mean:	6		Range: Mean:		.1	Range: Mean:	6		Range: Mean:	25.8	51.6	Range: Mean:	6.0		ange: ean:	22.2 44.4 4.5
to Bankfull Width (p-p/Wbkf)	Range:	2.4	3.3	Range:	1.2	.0 5.0	Range:	5.0	7.0	Range:			Range:	5.0	7.0	Range:	3.0	6.0	Range:			ange:	3.0 6.0
Barnaan (19 probla)	. tungo.	2.7	0.0	. tunge.	1.1.4	0.0	. tungo.	0.0	1.0	. tange.			. tango.	0.0	1.0	. tungo.	0.0	0.0	ango.	0.0		yo.	0.0

Used Manning's Equation: Existing "n" values - mean n = 0.0425, low range n = 0.050, high range n = 0.035
 Proposed "n" values - mean n = 0.038, low range n = 0.042, high range n = 0.034

 Stream has been historically ditched and straightened. Typical pattern and profile features were not observed on this reach during the geomorphic assessment.

 Onsite Reference Reach average stream slope determined using survey information.

Rockwell Pastures

<table-container> Image: Series and the se</table-container>	VARIABLES	Onsit	e Reference UT4 ³	e Reach		Existing UT4 Middle		nal Curves Pie sgen Referenc		[Design Reach UT4 Middle		Existing UT4 Lower		nal Curves Piedmont sgen Reference Values		Design Reach UT4 Lower	E	xisting UT5		ional Curves Piedmont Rosgen Reference Values
	STATION				48	8+00 to 69+00				41	5+06 to 436+37	69-	+00 to 80+35.54			436	6+37 to 449+43.57	50	+00 to 60+75		
<form> Image: I</form>	· · · · · · · · · · · · · · · · · · ·		C4			F4		C/E			C4		E4b		C/E		C4		E6		C/E
																		-			
			-			0.28															
			1	1		1		-			10.7						1 r				
					Ŭ		Ū			•		-						Ŭ		Ŭ	
		-		1			-										1 I				
	1 (0.0)	-			Ū		0	6.9		Ū	12.6	Ū				Ŭ		U		Ű	
Displand		Range:			Range:		Range:			Range:		Range:		Range:		Range:		Range:		Range:	
1 <td< td=""><td></td><td></td><td>4</td><td>1.2</td><td></td><td>N/A²</td><td></td><td>9.1</td><td>1</td><td></td><td>9.1</td><td></td><td>9.9</td><td></td><td>11.9</td><td></td><td>11.3</td><td></td><td>5.0</td><td></td><td>3.5</td></td<>			4	1.2		N/A ²		9.1	1		9.1		9.9		11.9		11.3		5.0		3.5
	, , , , , , , , , , , , , , , , , , ,				- J -									- <u>J</u>		- J-		- J -		¥	
		-		1	_	IN/A		1		_		_				_		_			
s <td< td=""><td></td><td>-</td><td></td><td></td><td></td><td>N/A²</td><td></td><td></td><td>9</td><td>Ŭ</td><td></td><td>-</td><td></td><td>-</td><td>47.7</td><td>-</td><td></td><td>Ŭ</td><td></td><td></td><td></td></td<>		-				N/A ²			9	Ŭ		-		-	47.7	-		Ŭ			
1 1 0 <td< td=""><td>(Q_{bkf})</td><td>Range:</td><td>21.7</td><td>25.8</td><td>Range:</td><td></td><td>Range:</td><td></td><td></td><td>Range:</td><td>34.2 42.2</td><td>Range:</td><td>33.8 48.2</td><td>Range:</td><td></td><td>Range:</td><td>41.1 50.7</td><td>Range:</td><td>17.8 2</td><td>5.4 Range:</td><td></td></td<>	(Q _{bkf})	Range:	21.7	25.8	Range:		Range:			Range:	34.2 42.2	Range:	33.8 48.2	Range:		Range:	41.1 50.7	Range:	17.8 2	5.4 Range:	
13) Marting 13) Marting 1 1 Marting Marting 1 Ma	9. Bankfull Maximum Depth	Mean:	1	1.1	Mean:	N/A ²				Mean:	1.4	Mean:	1.7	Mean:		Mean:	1.5	Mean:	1.4		
	(d _{max})	-			Ũ		0			•								Ű		•	
Image <				1																	
<form> □ <t< td=""><td></td><td></td><td></td><td></td><td>v v</td><td></td><td></td><td></td><td>1.5</td><td>U U</td><td></td><td><u> </u></td><td></td><td><u> </u></td><td></td><td><u> </u></td><td></td><td><u> </u></td><td></td><td></td><td></td></t<></form>					v v				1.5	U U		<u> </u>		<u> </u>		<u> </u>		<u> </u>			
no <td>d_{bkf} ratio</td> <td>Range:</td> <td></td> <td></td> <td>Range:</td> <td></td> <td>Range:</td> <td></td> <td></td> <td>Range:</td> <td></td> <td>Range:</td> <td></td> <td>Range:</td> <td></td> <td>Range:</td> <td></td> <td>Range:</td> <td></td> <td> Range:</td> <td></td>	d _{bkf} ratio	Range:			Range:		Range:			Range:		Range:		Range:		Range:		Range:		Range:	
<form> 10 10 10 0</form>		Mean:	2	0.1	Mean:	N/A ²	Mean:			Mean:		Mean:	78.6	Mean:		Mean:		Mean:	18.0	Mean:	
Magely Ma	(item	Ű			Ű					Ŭ.		Ů		Ŭ		Ŭ		Ū		Ű	
10 Name Nam Name Name Name <		-		2.7							9.1						13.6				
1 <td< td=""><td></td><td>U U</td><td>1</td><td>3.6</td><td>Ũ</td><td></td><td>Ŭ</td><td></td><td></td><td><u> </u></td><td>123.1</td><td>Ŭ</td><td></td><td>Ŭ</td><td></td><td></td><td>138.0</td><td>Ŭ</td><td></td><td>Ŭ</td><td></td></td<>		U U	1	3.6	Ũ		Ŭ			<u> </u>	123.1	Ŭ		Ŭ			138.0	Ŭ		Ŭ	
Image <	(L _m)						-									1					
10 10 10 1	15. Ratio of Meander Length to	Mean:	1	1.9	Mean:	NA ²	Mean:	11.	5	Mean:	11.5	Mean:	NA ²	Mean:	11.5	Mean:	11.5	Mean:	NA ²	Mean:	11.5
Image Image Image Image Image <td></td> <td></td> <td></td> <td></td> <td>Ŭ,</td> <td>-</td> <td></td> <td>9.0</td> <td>14.0</td> <td>Ŭ,</td> <td></td> <td>v</td> <td></td> <td>U U</td> <td>9.0 14.0</td> <td>U U</td> <td></td> <td>Ŭ</td> <td></td> <td>-</td> <td>9.0 14.0</td>					Ŭ,	-		9.0	14.0	Ŭ,		v		U U	9.0 14.0	U U		Ŭ		-	9.0 14.0
17 Norm 0.1 ≥··· Norm Norm 0.1 ≥··· Norm 0.1 ≥··· Norm 0.1 ≥··· Norm				1									NA ²								
Image No No No No	(0	Ŭ			Ű		0	2.8		Ū		Ū	 NA ²	Ű	2.8	Ŭ		U		Ű	
Normation Nor				1	_																
<table-container> 10 Marce Marce</table-container>		Mean:			Mean:	N/A ²	Mean:			Mean:		Mean:	NA ²	Mean:		Mean:		Mean:	NA ²	Mean:	
Image Norme		Ű			Ű		-			Ū		Ū		Ŭ		Ŭ		U		Ű	
<form> 20 Signer Men 0 - None - None 0 - None None None None - None None<td></td><td></td><td></td><td>1</td><td></td><td>NA²</td><td></td><td></td><td></td><td></td><td></td><td></td><td>NA⁻</td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td></form>				1		NA ²							NA ⁻					_			
<table-container> 12 1 <</table-container>		Ŭ			ÿ	1.03	Ŭ		0.0	0		Ŭ	1.02			Ű				Ŭ	
min Name		¥			Ŭ.					<u> </u>		<u> </u>		<u> </u>				<u> </u>			
<table-container> 12 Average Sharm Single Mark Mark 10 1 Mark 1</table-container>	21. Valley Slope (Sv _{alley})	-	0.0	-									0.0118								
	22. Average Stream Slope ³		0.0				0						0.0115			0		0		U	
Name Nome 0.0004 0.000 <td< td=""><td>· · · · · · · · · · · · · · · · · · ·</td><td>Range:</td><td></td><td></td><td>Range:</td><td></td><td>Range:</td><td></td><td></td><td>Range:</td><td></td><td>Range:</td><td></td><td>Range:</td><td></td><td>Range:</td><td></td><td>Range:</td><td></td><td> Range:</td><td></td></td<>	· · · · · · · · · · · · · · · · · · ·	Range:			Range:		Range:			Range:		Range:		Range:		Range:		Range:		Range:	
12 Raind singe shore hands Name	· · · ·			1	Mean:	N/A ²				Mean:			N/A ²					Mean:	N/A ²		
IN Dire Single Sin		-	0.0064	0.0493	Range:					Range:	0.0220 0.0294	Range:		-		Range:	0.0184 0.0245	Range:		Range:	
12 Pocklage Man: 0.01* Man: Man: 0.01* Man: Man: 0.01* Man:		-	0.4	32	Range [.]					Range:	1.8	Range:			1.8	Nean: Range:	1.8	Mean: Range:		Range	
1 Now	· · · · · · · · · · · · · · · · · · ·	-			-					-			I	-				•			
Since (\$\u00ebc,\$\\00ebc,\$\\00ebc,\$\\00ebc,\$\\00ebc,\$\\u00ebc,\$\\00ebc,\$\\u00ebc,		-					-			Range:				Range:		Range:					
27. Maxim Pool Man: 1.5 Man: 1.4 1.5 Range: 1.4 1.5 Range: - Ra	· · · · · · · · · · · · · · · · · · ·			T	Mean:	N/A ²	Mean:	1		Mean:		Mean:	N/A ²	Mean:		Mean:		Mean:	N/A ²	Mean:	
Name Name 1.4 1.5 Rane - Rane Rane - Rane	i post sta	-			-					-		Ū			0.0 0.1	-		-		Ű	
28. Rais of Pool Depth (a_g, d_g, g_g) Rane: 2.5 Man: Man: Man: 3.4 Man: 0.8 Man: 3.3 Man: Man: <td></td> <td></td> <td></td> <td>1</td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td>				1													1				
bepth d _{uo} /d _{ub} Ange: Range: </td <td></td> <td>-</td> <td></td> <td></td> <td>-</td> <td></td> <td>-</td> <td></td> <td></td> <td>-</td> <td></td> <td>-</td> <td></td> <td>-</td> <td></td> <td>-</td> <td></td> <td>-</td> <td></td> <td>-</td> <td></td>		-			-		-			-		-		-		-		-		-	
Monol Range ange	· · · · · · · · · · · · · · · · · · ·							1		h											
30 Raio of Pool Width 0 Mean: $0 \ - $	29. Pool Width	Mean:	4	4.1	Mean:	N/A ²	Mean:			Mean:	21.2	Mean:	6.5	Mean:		Mean:	22.9	Mean:	N/A ²	Mean:	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		-			-					-		-		-				-			
And the form Mean Mean <t< td=""><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td>h</td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td></t<>		-						1		h						1					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		-			-					-					1.3 1.7	-		-			
32 Ratio d Pool Area to Mean: 1 Mean: $\backslash A^2$ Mean: $\neg A$ Mean: $2 \cdot A$ Mean: $A = A = A = A = A = A = A = A = A = A =$				1												1	1				
Mean Out or Pool Spacing Mean $2 \cdot M$ Mean $N \cdot A^2$ Mean $M \cdot M^2$ Mean $N \cdot A^2$ Mean $M \cdot A$		-			-					-		-		-				-			
(p-p) Range: 17.6 24.1 Range: Range: - Range: 32.1 64.2 Range: - - Range: Range: - Range:		-			-					-		Ů				Ŭ		U		Ű	
34. Ratio of Pool to Pool Spacing Mean: 2.9 Mean: N/A ² Mean: 6.0 Mean: 4.5 Mean: N/A ² Mean: 6.0 Mean: 4.5 Mean: 4.5 Mean: 4.5 Mean: 6.0	· · · · · · · · · · · · · · · · · · ·					N/A ²	-	+					N/A ²								
		ő			J	N/A ²				J		J	N/A ²			<u> </u>		J		Ū,	
	to Bankfull Width (p-p/Wbkf)	Range:	2.4	3.3	Range:		Range:		7.0	Range:	3.0 6.0	Range:		Range:	5.0 7.0	Range:	3.0 6.0	Range:			5.0 7.0

Rockwell Pastures

	VARIABLES	Onsite	e Reference Reach UT4 ³	E	Existing UT6		al Curves Piedmont gen Reference Values	E	Existing UT7		al Curves Piedmont gen Reference Values	Design Reach UT7			
	STATION			60+	-00 to 71+73.89			70+	+00 to 83+33.06			700	+00 to 714+39.41		
1.	Stream Type (Rosgen)		C4		E4/E5		C/E		B5		C/E		C5		
2.	Drainage Area		0.11		0.02		0.02		0.05		0.05		0.05		
3.	(sq. mile) Bankfull Width	Mean:	7.3	Mean:	2.5	Mean:	2.2	Mean:	2.8	Mean:	3.3	Mean:	6.0		
	(W _{bkf})	Range:		Range:		Range:		Range:		Range:		Range:			
4.	Bankfull Mean	Mean:	0.6	Mean:	0.4	Mean:	0.4	Mean:	0.4	Mean:	0.6	Mean:	0.5		
5	depth (d _{bkf}) Width/Depth Ratio	Range: Mean:		Range: Mean:		Range: Mean:	5.2	Range: Mean:		Range: Mean:		Range: Mean:	 12.8		
5.	(W _{bkl} /d _{bkl})	Range:		Range:		Range:		Range:		Range:		Range:			
6.	Bankfull cross-sectional	Mean:	4.2	Mean:	0.9	Mean:	1.5	Mean:	1.0	Mean:	2.8	Mean:	2.8		
7	Area (Abkf) Bankfull Mean Velocity	Range: Mean:		Range: Mean:		Range: Mean:		Range: Mean:		Range: Mean:		Range: Mean:			
	(V _{bkf})	Range:	5.2 6.1	Range:	1.8 5.1	Range:		Range:	1.8 2.5	Range:		Range:	2.1 2.5		
8.	Bankfull Discharge ¹ , cfs	Mean:	23.6	Mean:	2.0	Mean:	5.3	Mean:	2.1	Mean:	10.3	Mean:	6.4		
0	(Q _{bkf}) Bankfull Maximum Depth	Range: Mean:	21.7 25.8	Range: Mean:	1.7 4.6 0.6	Range: Mean:		Range: Mean:	1.8 2.5 0.7	Range: Mean:		Range: Mean:	5.8 7.2 0.8		
9.	(d _{max})	Range:		Range:		Range:		Range:		Range:		Range:			
10.	Max d _{max} /d _{bkf}	Mean:	1.9	Mean:	1.6	Mean:	1.4	Mean:	1.9	Mean:	1.4	Mean:	1.6		
14	ratio	Range: Mean:		Range: Mean:		Range: Mean:	1.2 1.5	Range: Mean:		Range: Mean:	1.2 1.5	Range: Mean:			
11.	Low Bank Height to max d _{bkf} ratio	Range:		Range:		Range:		Mean: Range:		Range:		Range:			
12.	Width of Flood Prone	Mean:	20.1	Mean:	6.6	Mean:		Mean:	5.6	Mean:		Mean:	45.1		
	Area (W _{fpa})	Range:		Range:		Range:		Range:		Range:		Range:	16.5 73.6		
13.	Entrenchment Ratio (W _{fpa} /W _{bkf})	Mean: Range:	2.7	Mean: Range:	2.6	Mean: Range:		Mean: Range:	2.0	Mean: Range:		Mean: Range:	7.5		
14.	Meander Length	Mean:	13.6	Mean:	 N/A ²	Mean:		Mean:	N/A ²	Mean:		Mean:	69.0		
	(L _m)	Range:	10.2 17.0	Range:		Range:		Range:		Range:		Range:	54.0 84.0		
15.	Ratio of Meander Length to	Mean:	1.9	Mean:	NA ²	Mean:	11.5	Mean:	NA ²	Mean:	11.5	Mean:	11.5		
16	Bankfull Width (L _m /W _{bkf}) Radius of Curvature	Range: Mean:	1.4 2.3 9.0	Range: Mean:	 NA ²	Range: Mean:	9.0 14.0	Range: Mean:	 NA ²	Range: Mean:	9.0 14.0	Range: Mean:	9.0 14.0 16.5		
10.	(R _c)	Range:	5.3 12.6	Range:		Range:		Range:		Range:		Range:	15.0 18.0		
17.	Ratio of Radius of Curvature	Mean:	1.2	Mean:	NA ²	Mean:	2.8	Mean:	NA ²	Mean:	2.8	Mean:	2.8		
40	to Bankfull Width (R _c /W _{bkf})	Range:	0.7 1.7	Range:		Range:	2.5 3.0	Range:		Range:	2.5 3.0	Range:	2.5 3.0 24.0		
18.	Belt Width (W _{blt})	Mean: Range:	3.2 5.7	Mean: Range:	NA ²	Mean: Range:		Mean: Range:	NA ²	Mean: Range:		Mean: Range:	18.0 30.0		
19.	Meander Width Ratio	Mean:	0.6	Mean:	NA ²	Mean:	4.0	Mean:	NA ²	Mean:	4.0	Mean:	4.0		
	(W _{blt} /W _{bkl})	Range:	0.4 0.8	Range:		Range:	3.0 5.0	Range:		Range:	3.0 5.0	Range:	3.0 5.0		
20.	Sinuosity (k) (Stream Length / Valley Length)	Mean: Range:	1.05	Mean: Range:	1.00	Mean: Range:		Mean: Range:	1.01 1.00 1.01	Mean: Range:		Mean: Range:	1.13 1.07 1.15		
21.	Valley Slope (Sv _{alley})	Mean:	0.0173	Mean:	0.0162	Mean:		Mean:	0.0185	Mean:		Mean:	0.0112		
22	(ft/ft) Average Stream Slope ³	Range: Mean:		Range: Mean:		Range: Mean:		Range: Mean:	0.0086 0.0267 0.0184	Range: Mean:		Range: Mean:	0.0086 0.0267 0.0099		
22.	$(S_{avg}) = (S_{vallev}/k)$	Range:		Range:		Range:		Range:		Range:		Range:			
23.	Riffle Slope	Mean:	0.0279	Mean:	N/A ²	Mean:		Mean:	N/A ²	Mean:		Mean:	0.0173		
<u></u>	(S _{riff})	Range: Mean:	0.0064 0.0493	Range: Mean:		Range: Mean:		Range: Mean:		Range: Mean:		Range: Mean:	0.0148 0.0197		
24.	Ratio of Riffle Slope to Avg. Slope (S _{riftle} /S _{avg})	Mean: Range:	1.8 0.4 3.2	Mean: Range:	N/A ²	Mean: Range:	1.8 1.5 2.0	Mean: Range:	N/A ²	Mean: Range:	1.8 1.5 2.0	Mean: Range:	1.8 1.5 2.0		
25.	Pool Slope	Mean:	0.0100	Mean:	N/A ²	Mean:		Mean:	N/A ²	Mean:		Mean:	0.000		
	(S _{pool})	Range:	0.0078 0.0136	Range:		Range:		Range:		Range:		Range:	0.0000 0.0010		
26.	Ratio of Pool Slope to Avg. Slope (S _{pool} /S _{avo})	Mean: Range:	0.6	Mean: Range:	N/A ²	Mean: Range:	0.0	Mean: Range:	N/A ²	Mean: Range:	0.0	Mean: Range:	0.0 0.1		
27.	Maximum Pool	Range: Mean:	1.5	Range: Mean:	 N/A ²	Range: Mean:	0.0 0.1	Range: Mean:	0.8	Range: Mean:		Range: Mean:	1.7		
	Depth (d _{pool})	Range:	1.4 1.5	Range:		Range:		Range:		Range:		Range:			
28.	Ratio of Pool Depth to Avg.	Mean:	2.5	Mean:	N/A ²	Mean:	3.0	Mean:	2.3	Mean:	3.0	Mean:	3.6		
20	Depth (d _{pool} /d _{bkf}) Pool Width	Range: Mean:		Range: Mean:	 N/A ²	Range: Mean:	2.5 3.5	Range: Mean:		Range: Mean:	2.5 3.5	Range: Mean:			
29.	(W _{pool})	Range:		Range:		Range:		Range:		Range:		Range:			
30.	Ratio of Pool Width to	Mean:	0.6	Mean:	N/A ²	Mean:	1.5	Mean:	1.0	Mean:	1.5	Mean:	1.9		
04	Bankfull Width (W _{pool} /W _{bkf})	Range:		Range:		Range:	1.3 1.7	Range:		Range:	1.3 1.7	Range:			
31.	Pool Area (A _{pool})	Mean: Range:	4.4	Mean: Range:	N/A ²	Mean: Range:		Mean: Range:	1.6	Mean: Range:		Mean: Range:	8.1		
32.	Ratio of Pool Area to	Mean:	1.0	Mean:	N/A ²	Mean:		Mean:	1.6	Mean:		Mean:	2.9		
	Bankfull Area (A _{pool} /A _{bkf})	Range:		Range:		Range:		Range:		Range:		Range:			
33.	Pool to Pool Spacing (p - p)	Mean: Range:	20.8 17.6 24.1	Mean: Range:	N/A ²	Mean: Range:		Mean: Range:	N/A ²	Mean: Range:		Mean: Range:	27.0 18.0 36.0		
34.	Ratio of Pool to Pool Spacing	Mean:	2.9	Mean:	N/A ²	Mean:	6.0	Mean:	N/A ²	Mean:	6.0	Mean:	4.5		
	to Bankfull Width (p-p/Wbkf)	Range:	2.4 3.3	Range:		Range:	5.0 7.0	Range:		Range:	5.0 7.0	Range:	3.0 6.0		

Used Manning's Equation: Existing "n" values - mean n = 0.0425, low range n = 0.050, high range n = 0.035
 Proposed "n" values - mean n = 0.038, low range n = 0.042, high range n = 0.034

 Stream has been historically ditched and straightened. Typical pattern and profile features were not observed on this reach during the geomorphic assessment.

 Onsite Reference Reach average stream slope determined using survey information.

	fic Name	mmunities (By Zone) Common Name	Zone 1: Stream Channel and Banks	Zone 2: Riparian	Zone 3: Wet	Zone 4: Oxbow Wetland
		Can	lopy			
Betula	nigra	River Birch		BC	BC	1
Carya	cordiformis	Bitternut Hickory		BC		1
Carya	ovata	Shagbark Hickory		BC		1
Fraxinus	pennsylvanica	Green Ash		BC		1
Juglans	nigra	Black Walnut		BC		1
Platanus	occidentalis	Sycamore		BC	BC	1
Quercus	alba	White Oak		BC		W
Quercus	michauxii	Swamp Chestnut Oak		BC		е
Quercus	lyrata	Overcup Oak			BC	t
Quercus	nigra	Water Oak		BC	BC	1
Quercus	phellos	Willow Oak		BC	BC	а
Salix	nigra	Black Willow	LS		BC	n
Ulmus	alata	Winged Elm		BC		d
		Under	rstory			
Acer	barbatum	Southern Sugar Maple		BC		S
Aesculus	sylvatica	Buckeye		BC		e
Asimina	triloba	Pawpaw		BC		e
Carpinus	caroliniana	American Hormbeam		BC		d
Cercis	canadensis	Eastern Redbud		BC	BC	
Cephalanthus	occidentalis	Buttonbush			BC	М
Cornus	атотит	Silky Dogwood	LS		BC	i
Euonymus	americanus	Strawberry Bush		BC		х
Ilex	decidua	Possumhaw		BC	BC	
Morus	rubra	Red Mulberry		BC		
Sassafras	albidum	Sassafras		BC]
Lindera	benzoin	Spicebush		BC]
Ulmus	rubra	Slippery Elm		BC]
Sambucus	canadensis	Elderberry	LS]
Viburnum	dentatum	Southern Arrowwood	LS			l
Planting Types: 1	LS - Live Stake; B	C - Bare Root or Container				

 Table V: Designed Vegetative Communities (By Zone)

Table VI: Designed Vegetative Community

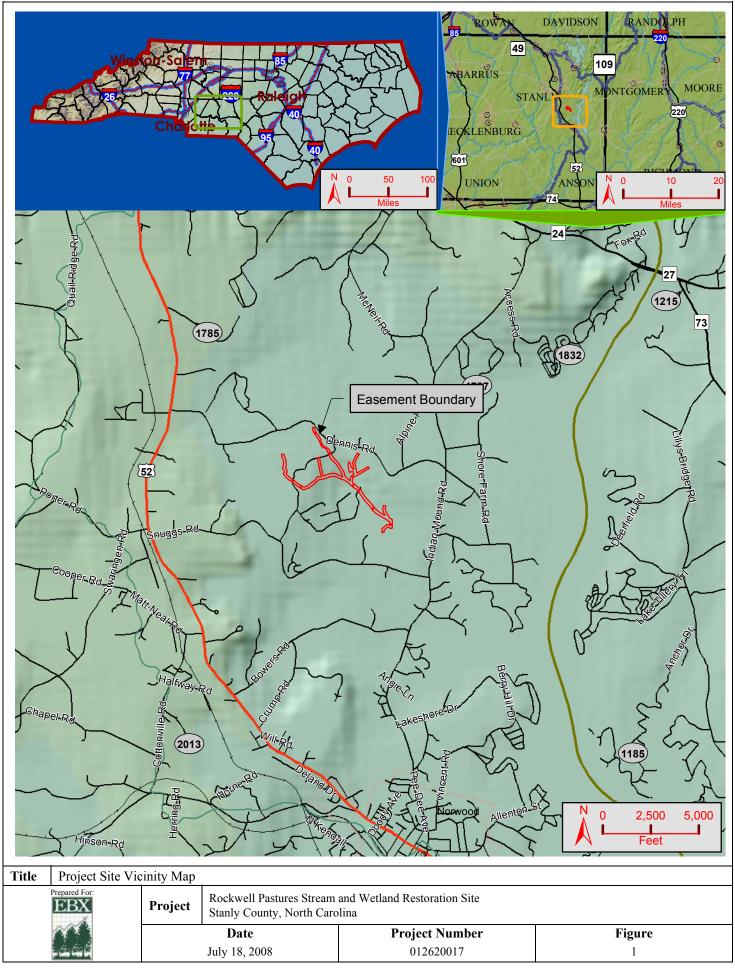
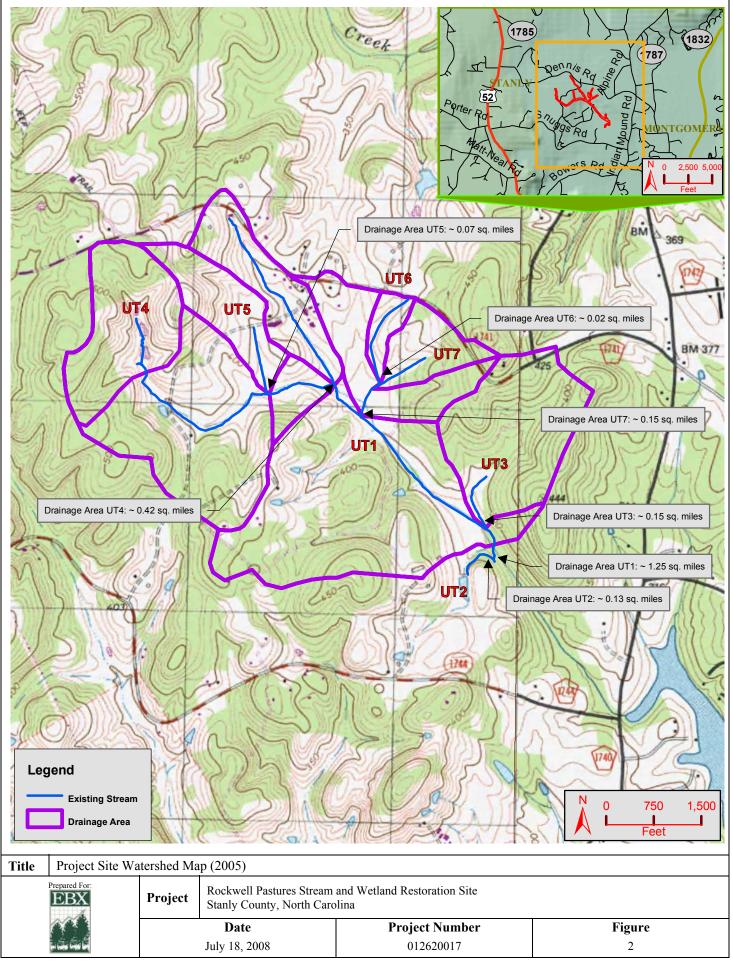
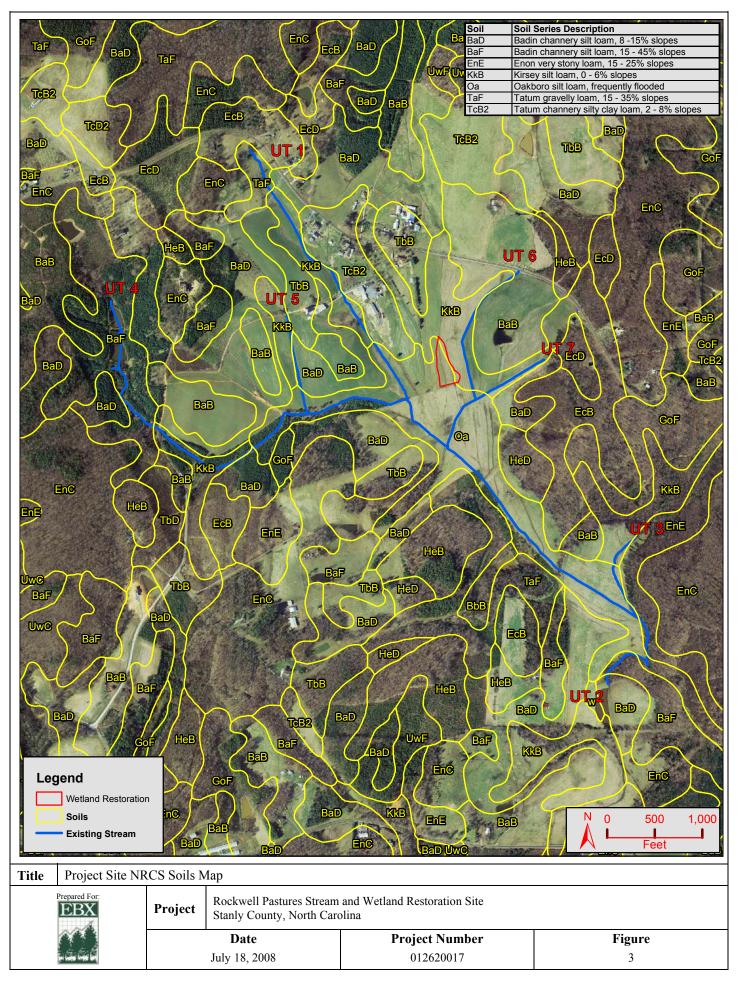
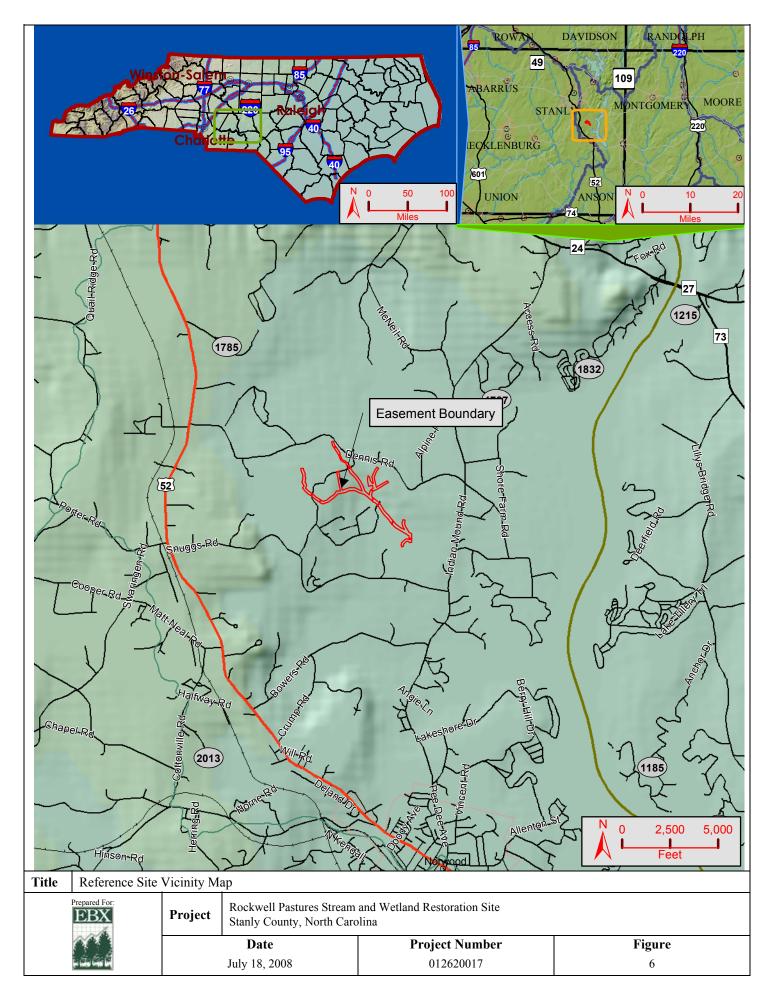

Zone 4: Oxbow Wetland Seed Mix								
Scientific Name	Common Name	%						
Panicum virgatum	Redtop Panic Grass	60%						
Carex lupilina	Hopd Sedge	10%						
Juncus effusus	Soft Rush	10%						
Carex lurida	Lurid (Shallow) Sedge	7%						
Scirpus cyperinus	Wool Grass	5%						
Saururus cernuus	Lizard's Tail	4%						
Carex squarrosa	Squarrose Sedge	4%						

Table VII: Designed Vegetative Community


Permanent Riparian Seed Mix									
Scientific Name	Common Name	%							
Leersia oryzoides	Rice Cut Grass	5%							
Juncus effusus	Soft Rush	10%							
Panicum clandestium	Deertongue	20%							
Panicum virgatum	Switchgrass	50%							
Veronia noveboracensis	Ironweed	5%							
Helianthus angustifolius	Swamp Sumflower	5%							
Eupatorium fistulosum	Joe Pye Weed	5%							

11.0 Figures

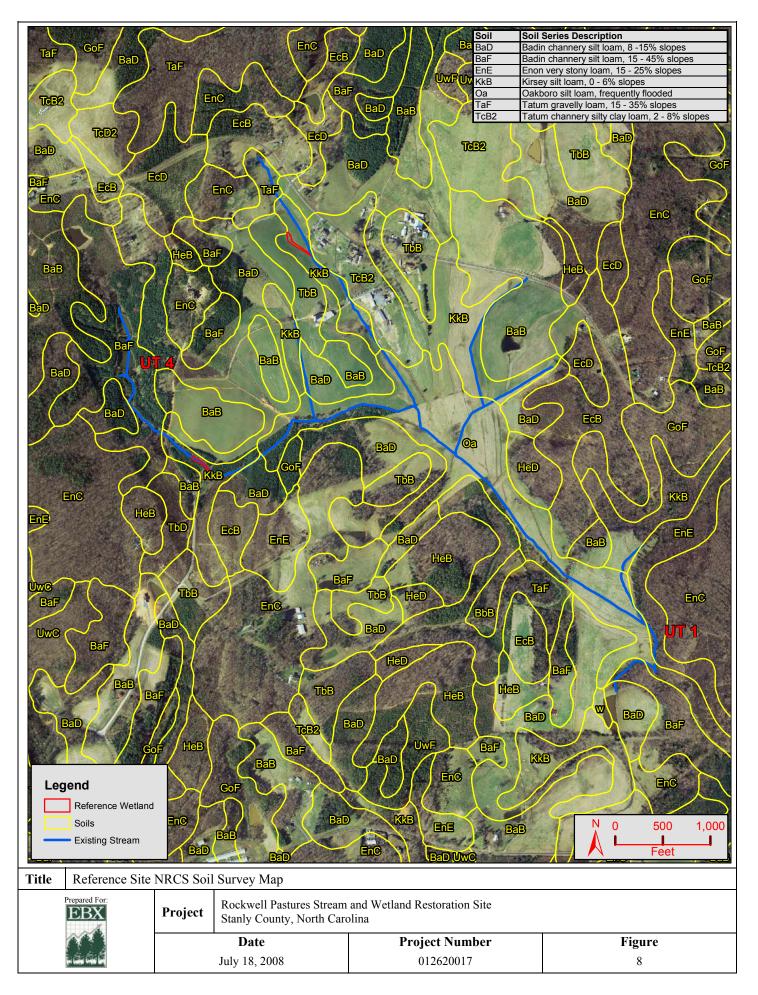


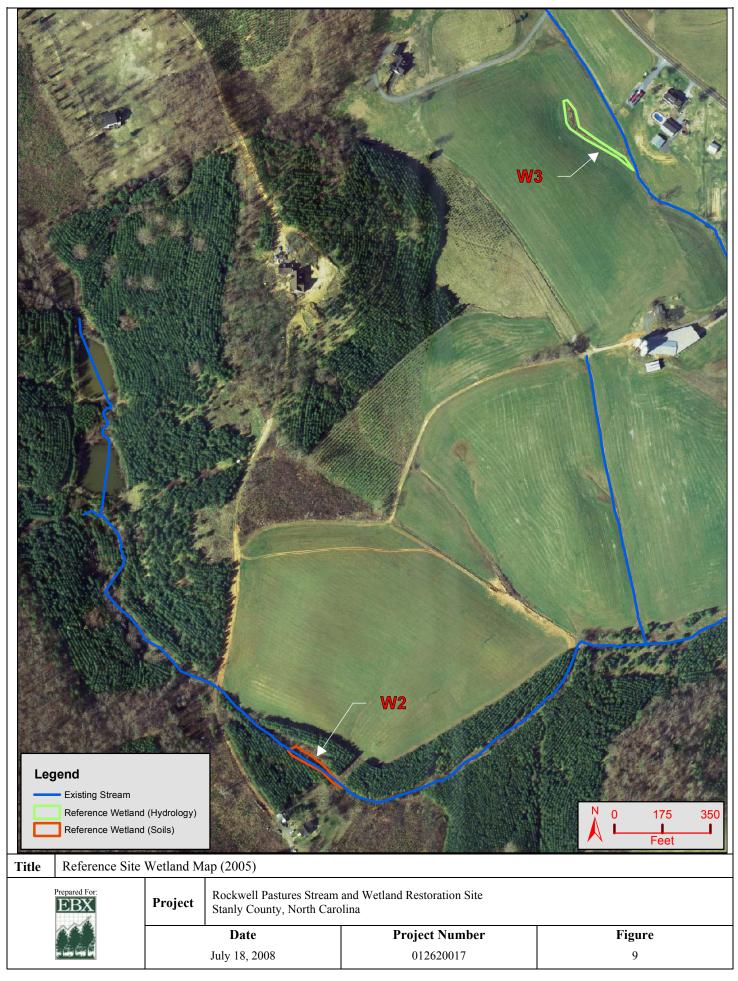


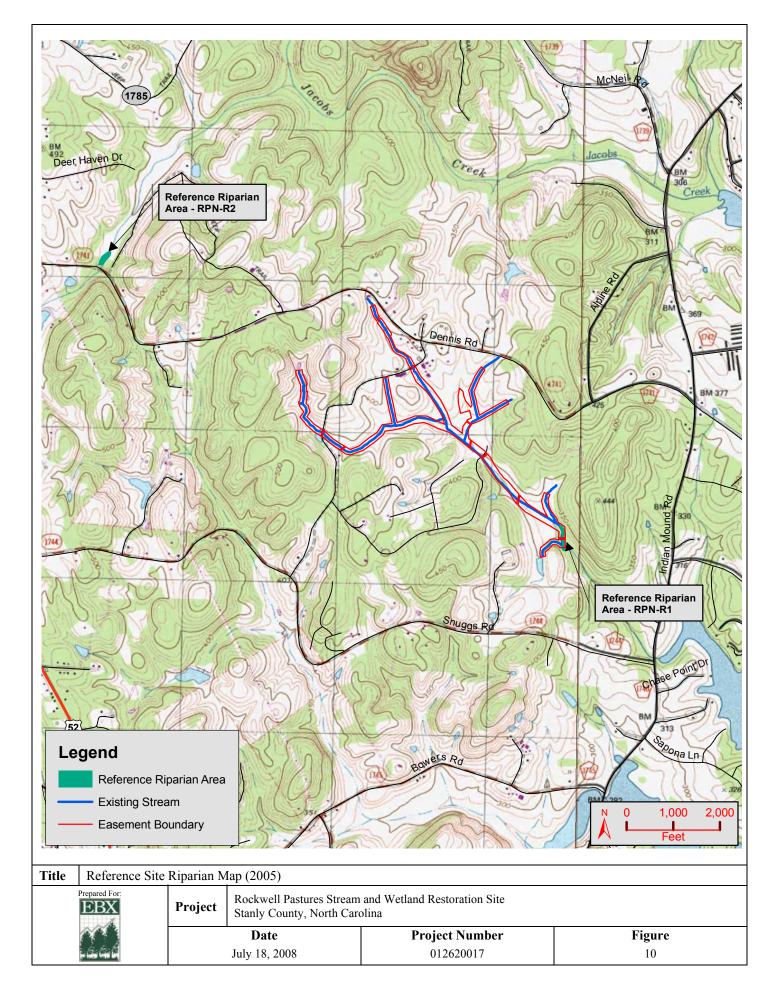
		H (
	W	UT1		
Gag UT 4 TS	je W3 -	UT 5	W1 UT 6	
	W2			UT 7
		J.		Caye W1
				UT 3
				UT 2
Constant of the second se	Restoration			
Existing Stream Easement Bounda Title		rological Features and US	GS Gage Station Locations (2005)	N 0 500 1,000
Prepared For:	Project		and Wetland Restoration Site	
en indes lines line		Date July 18, 2008	Project Number 012620017	Figure 4

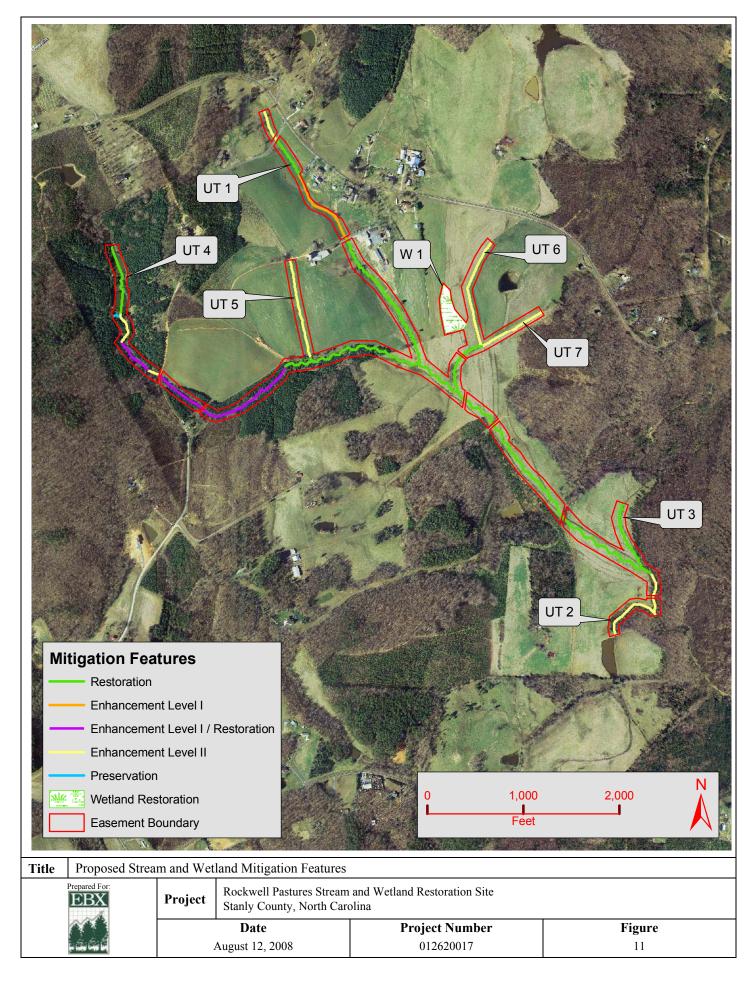


Title				
Prepared For:	d Delineation Map (2005) Rockwell Pastures Stream and Wetland Restoration Site			
EBX	Project	Stanly County, North Carc	olina	
in the trace line	Date July 18, 2008		Project Number 012620017	Figure 5





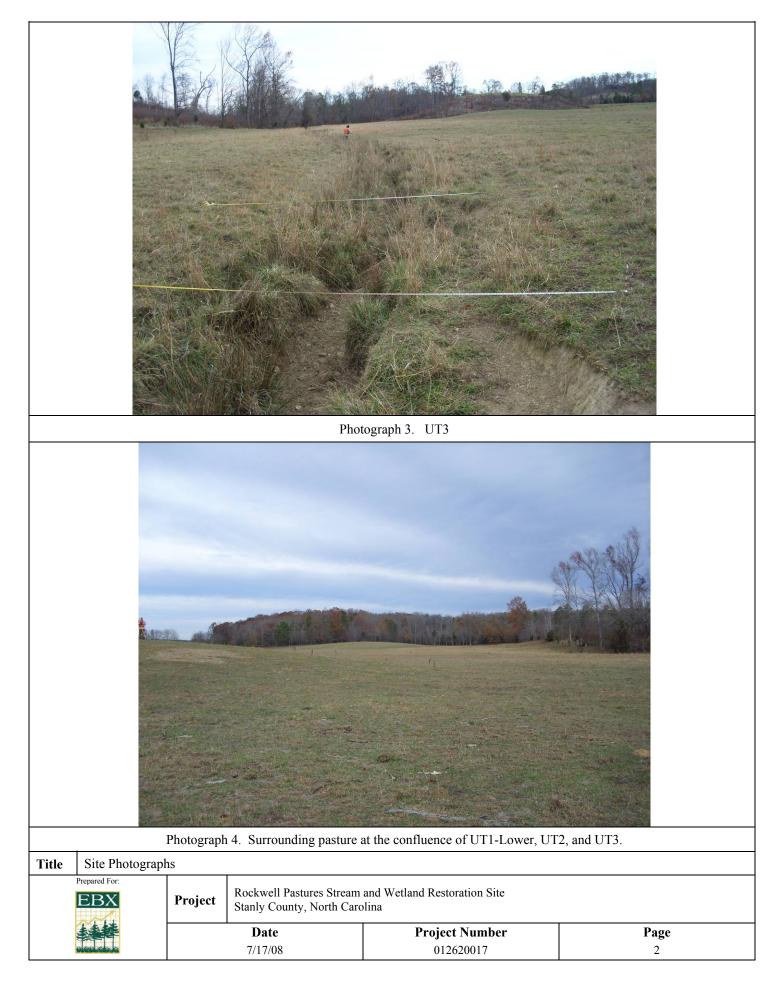




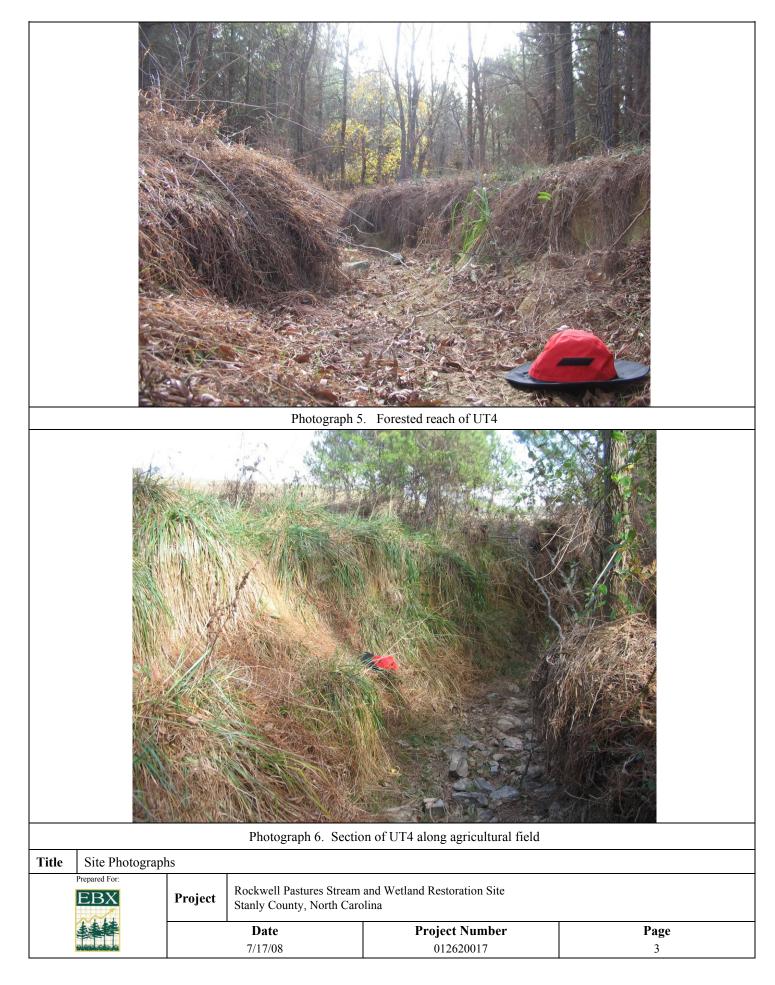
12.0 Design Sheets

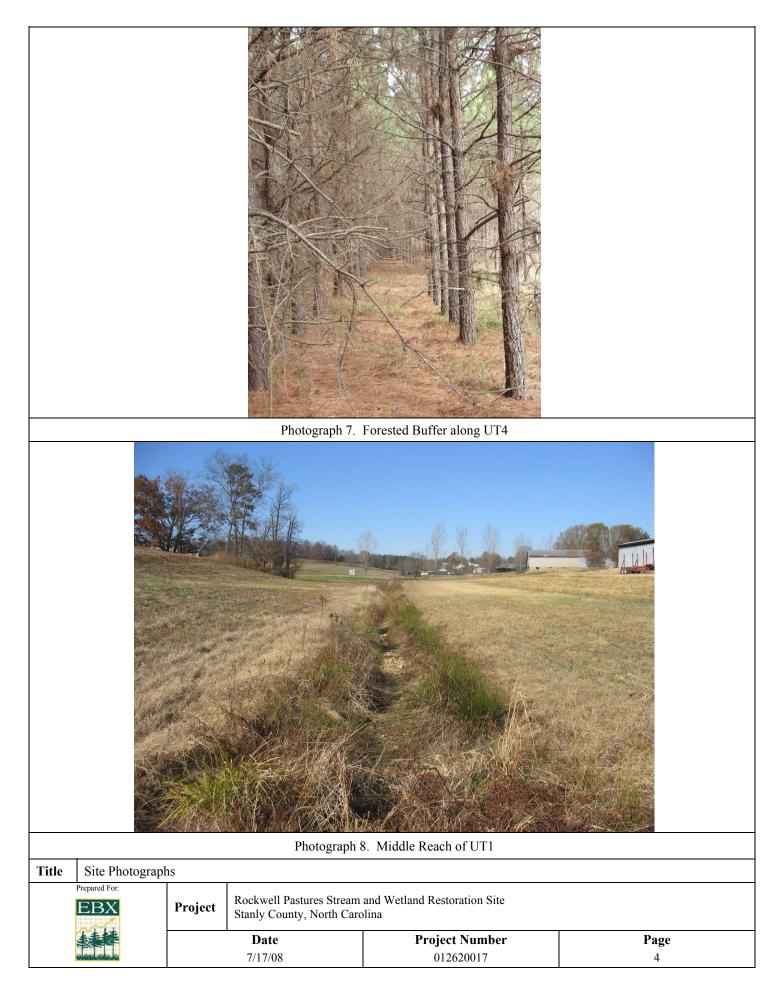
(See "Restoration Plan for Rockwell Pastures" design plan set dated 7/15/2008)

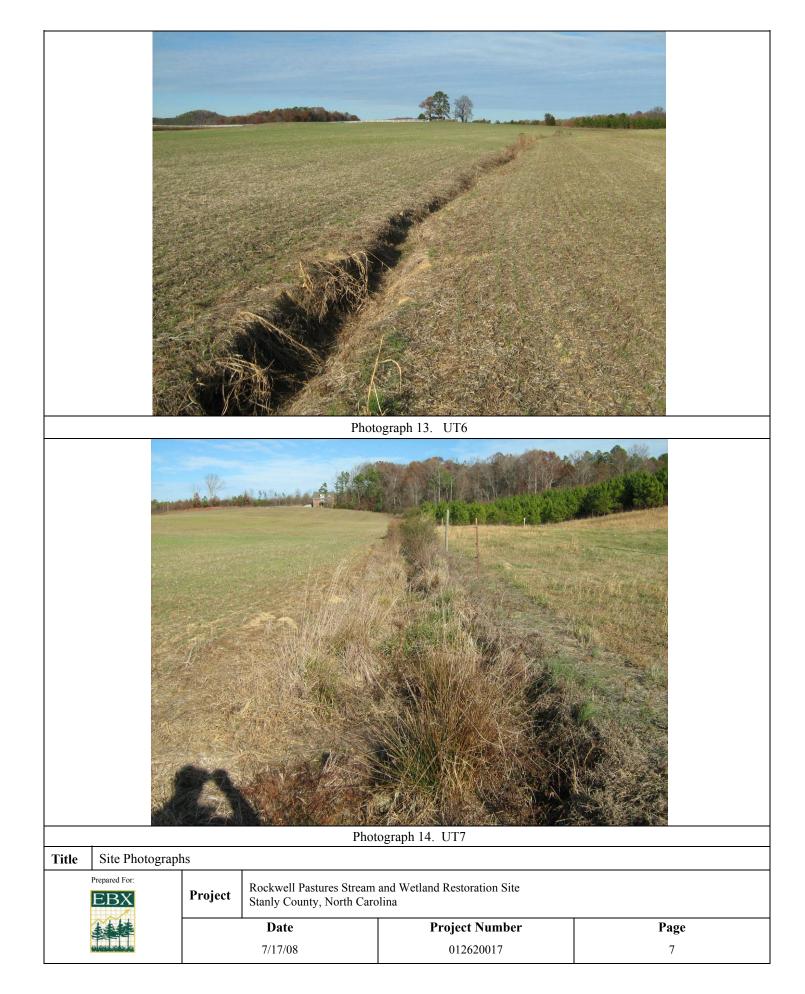
13.0 Appendices


Appendix 1

Project Site Photographs







		A A A A A A A A A A A A A A A A A A A		and the second
				and the second se
	and the			
	N. W			
	1 K			Call the a
		Photograph	11. Upper Reach of UT1.	
			an opportunities of the	
		- A CONTRACTOR		
		21A -		
		Photograph 12. Upper	Reach of UT1 and surrounding areas	
Title Site Phot	tographs			
Prepared For: EBX	Project	Rockwell Pastures Stream Stanly County, North Car	and Wetland Restoration Site	
		Date	Project Number	Page
and and a set		7/17/08	012620017	6

No.			
Photograph 15. W	1 – Proposed wetland r	estoration area	
	Photograph 15. W	Photograph 15. W1 – Proposed wetland r	Photograph 15. W1 – Proposed wetland restoration area

Project Site NCDWQ Stream Classification Forms

Date:	10/19/2006	Project:	Rockwell Farm Site	Latitude:	
Evaluator:	Todd St.John (KHA)	Site:	UT1 - intermittent	Longitude:	
Total Poir	n ts: 30			Other	
Stream is at le if ≥ 19 or perer	east intermittent nnial if ≥ 30	County:	Stanly	e.g. Quad Name:	Albemarle, NC

Α.	Geomorphology Subtotal = 16.5	Absent	Weak	Moderate	Strong	Score
1 ^a .	Continuous bed and bank	0	1	2	3	2
2.	Sinuosity	0	1	2	3	1
3.	In-channel structure: riffle-pool sequence	0	1	2	3	2
4.	Soil texture or stream substrate sorting	0	1	2	3	2
5.	Active/relic floodplain	0	1	2	3	2
6.	Depositional bars or benches	0	1	2	3	2
7.	Braided channel	0	1	2	3	0
8.	Recent alluvial deposits	0	1	2	3	2
9 ^a .	Natural levees	0	1	2	3	0
10.	Headcuts	0	1	2	3	1
11.	Grade Control	0	0.5	1	1.5	1
12.	Natural valley or drainage way	0	0.5	1	1.5	1.5
	Second or greater order channel on existing GS or NRCS map or other documented evidence.	No	= 0	Yes	= 3	0

^a Man-made ditches are not rated; see discussion in manual

B. Hydrology Subtotal = 6					
14. Groundwater flow/discharge	0	1	2	3	1
15. Water in channel and > 48 hrs since rain, or Water in channel dry or growing season	0	1	2	3	2
16. Leaflitter	1.5	1	0.5	0	1.5
17. Sediment on plants or debris	0	0.5	1	1.5	0
18. Organic debris lines or piles (Wrack lines)	0	0.5	1	1.5	0
19. Hydric soils (redoximorphic features) present?	No	= 0	Yes	= 1.5	1.5

C. Biology Subtotal = 7.5					
20 ^b . Fibrous roots in channel	3	2	1	0	2
21 ^b . Rooted plants in channel	3	2	1	0	1
22. Crayfish	0	0.5	1	1.5	0.5
23. Bivalves	0	1	2	3	0
24. Fish	0	0.5	1	1.5	0
25. Amphibians	0	0.5	1	1.5	0.5
26. Macrobenthos (note diversity and abundance)	0	0.5	1	1.5	
27. Filamentous algae; periphyton	0	1	2	3	2
28. Iron oxidizing bacteria/fungus	0	0.5	1	1.5	0.5
29 ^b . Wetland plants in streambed	FAC = 0.5; F	ACW = 0.75; OI	BL = 1.5; SAV =	2.0; Other = 0	0.75

^b Items 20 and 21 focus on the presence of upland plants, Item 29 focuses on the presence of aquatic or wetland plants.

Notes: (use back side of this form for additional notes.) Sketch: tadpoles, aquaric beetles, dragonfly larva

Date:	9/26/2006	Project:	Rockwell Farm Site	Latitude:	
Evaluator:	Todd St.John (KHA)	Site:	UT1 - perennial	Longitude:	
Total Poir			Stanly	Other	Albemarle, NC
if ≥ 19 or pere	east intermittent nnial if ≥ 30	County:	Starily	e.g. Quad Name:	Albemane, NC

A. Geomorphology Subtotal = 23 Absent Weak Moderate Strong Score

	moun	modorato	easing	000.0
0	1	2	3	3
0	1	2	3	0
0	1	2	3	3
0	1	2	3	3
0	1	2	3	3
0	1	2	3	2
0	1	2	3	0
0	1	2	3	3
0	1	2	3	0
0	1	2	3	0
0	0.5	1	1.5	1.5
0	0.5	1	1.5	1.5
No	= 0	Yes	= 3	3
	0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c ccccc} 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 0.5 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

^a Man-made ditches are not rated; see discussion in manual

B. Hydrology Subtotal = 9					
14. Groundwater flow/discharge	0	1	2	3	2
15. Water in channel and > 48 hrs since rain, or Water in channel dry or growing season	0	1	2	3	3
16. Leaflitter	1.5	1	0.5	0	0
17. Sediment on plants or debris	0	0.5	1	1.5	1.5
18. Organic debris lines or piles (Wrack lines)	0	0.5	1	1.5	1
19. Hydric soils (redoximorphic features) present?	No	= 0	Yes	= 1.5	1.5

C. Biology Subtotal = 16.5

20 ^b . Fibrous roots in channel	3	2	1	0	3
21 ^b . Rooted plants in channel	3	2	1	0	3
22. Crayfish	0	0.5	1	1.5	1.5
23. Bivalves	0	1	2	3	0
24. Fish	0	0.5	1	1.5	1.5
25. Amphibians	0	0.5	1	1.5	1.5
26. Macrobenthos (note diversity and abundance)	0	0.5	1	1.5	1.5
27. Filamentous algae; periphyton	0	1	2	3	3/////
28. Iron oxidizing bacteria/fungus	0	0.5	1	1.5	1.5
29 ^b . Wetland plants in streambed	FAC = 0.5; F/	ACW = 0.75; OI	BL = 1.5; SAV =	2.0; Other = 0	0

^b Items 20 and 21 focus on the presence of upland plants, Item 29 focuses on the presence of aquatic or wetland plants.

Notes: (use back side of this form for additional notes.) Sketch: crayfish, frogs, amphipods, dragonfly larva

Date:	9/26/2006	Project:	Rockwell Farm Site	Latitude:	
Evaluator:	Todd St.John (KHA)	Site:	UT2 - perennial	Longitude:	
Total Poir	n ts: 32			Other	
Stream is at least intermittent		County:	Stanly	e.g. Quad Name: Albemarle, No	
if ≥ 19 or perei	nnial if ≥ 30			•	

Α.	Geomorphology Subtotal = 11.5	Absent	Weak	Moderate	Strong	Score
1 ^a .	Continuous bed and bank	0	1	2	3	2
2.	Sinuosity	0	1	2	3	1
3.	In-channel structure: riffle-pool sequence	0	1	2	3	1
4.	Soil texture or stream substrate sorting	0	1	2	3	1
5.	Active/relic floodplain	0	1	2	3	2
6.	Depositional bars or benches	0	1	2	3	1
7.	Braided channel	0	1	2	3	0
	Recent alluvial deposits	0	1	2	3	0
9 ^a .	Natural levees	0	1	2	3	0
10.	Headcuts	0	1	2	3	1
11.	Grade Control	0	0.5	1	1.5	1
12.	Natural valley or drainage way	0	0.5	1	1.5	1.5
	Second or greater order channel on existing GS or NRCS map or other documented evidence.	No	= 0	Yes	= 3	0

^a Man-made ditches are not rated; see discussion in manual

B. Hydrology Subtotal = 8.5					
14. Groundwater flow/discharge	0	1	2	3	2
15. Water in channel and > 48 hrs since rain, or Water in channel dry or growing season	0	1	2	3	3
16. Leaflitter	1.5	1	0.5	0	1.5
17. Sediment on plants or debris	0	0.5	1	1.5	0.5
18. Organic debris lines or piles (Wrack lines)	0	0.5	1	1.5	0
19. Hydric soils (redoximorphic features) present?	No	= 0	Yes	= 1.5	1.5

C. Biology Subtotal = 12					
20 ^b . Fibrous roots in channel	3	2	1	0	1
21 ^b . Rooted plants in channel	3	2	1	0	1
22. Crayfish	0	0.5	1	1.5	1.5
23. Bivalves	0	1	2	3	0
24. Fish	0	0.5	1	1.5	1
25. Amphibians	0	0.5	1	1.5	1.5
26. Macrobenthos (note diversity and abundance)	0	0.5	1	1.5	1.5
27. Filamentous algae; periphyton	0	1	2	3	3
28. Iron oxidizing bacteria/fungus	0	0.5	1	1.5	1.5
29 ^b . Wetland plants in streambed	FAC = 0.5; F	ACW = 0.75; O	BL = 1.5; SAV =	2.0; Other =	0

^b Items 20 and 21 focus on the presence of upland plants, Item 29 focuses on the presence of aquatic or wetland plants.

Notes: (use back side of this form for additional notes.) Sketch: right-handed snails, mayflies, bullfrog tadpoles, minnows

Date:	9/26/2006	Project:	Rockwell Farm Site	Latitude:	
Evaluator:	Todd St.John (KHA)	Site:	UT3 - perennial	Longitude:	
Total Poir	n ts: 43			Other	
Stream is at least intermittent		County:	Stanly	e.g. Quad Name:	Albemarle, NC
if ≥ 19 or perei	nnial if ≥ 30			o.g. adda Namo.	

A. Geomorphology Subtotal = Absent Weak Moderate Strong Score 22

	Absent	Weak	Moderate	ouong	ocore
1 ^a . Continuous bed and bank	0	1	2	3	3
2. Sinuosity	0	1	2	3	2
3. In-channel structure: riffle-pool sequence	0	1	2	3	3
4. Soil texture or stream substrate sorting	0	1	2	3	3
5. Active/relic floodplain	0	1	2	3	2
6. Depositional bars or benches	0	1	2	3	1
7. Braided channel	0	1	2	3	0
8. Recent alluvial deposits	0	1	2	3	3
9 ^a . Natural levees	0	1	2	3	0
10. Headcuts	0	1	2	3	2
11. Grade Control	0	0.5	1	1.5	1.5
12. Natural valley or drainage way	0	0.5	1	1.5	1.5
 Second or greater order channel on existing USGS or NRCS map or other documented evidence. 	No = 0		Yes	= 3	0

^a Man-made ditches are not rated; see discussion in manual

B. Hydrology Subtotal = 7.5					
14. Groundwater flow/discharge	0	1	2	3	2
15. Water in channel and > 48 hrs since rain, or Water in channel dry or growing season	0	1	2	3	3
16. Leaflitter	1.5	1	0.5	0	0
17. Sediment on plants or debris	0	0.5	1	1.5	0.5
18. Organic debris lines or piles (Wrack lines)	0	0.5	1	1.5	0.5
19. Hydric soils (redoximorphic features) present?	No	= 0	Yes	= 1.5	1.5

C. Biology Subtotal = 13.5					
20 ^b . Fibrous roots in channel	3	2	1	0	3
21 ^b . Rooted plants in channel	3	2	1	0	3
22. Crayfish	0	0.5	1	1.5	
23. Bivalves	0	1	2	3	0
24. Fish	0	0.5	1	1.5	1
25. Amphibians	0	0.5	1	1.5	1
26. Macrobenthos (note diversity and abundance)	0	0.5	1	1.5	1.5
27. Filamentous algae; periphyton	0	1	2	3	2
28. Iron oxidizing bacteria/fungus	0	0.5	1	1.5	1
29 ^b . Wetland plants in streambed	FAC = 0.5; FA	ACW = 0.75; OI	BL = 1.5; SAV =	2.0; Other = 0	0

b Items 20 and 21 focus on the presence of upland plants, Item 29 focuses on the presence of aquatic or wetland plants.

Notes: (use back side of this form for additional notes.) Sketch: crayfish, frogs, amphipods, dragonfly larva

Date:	10/19/2006	Project:	Rockwell Farm Site	Latitude:
Evaluator:	Todd St.John (KHA)	Site:	UT4 - perennial	Longitude:
Total Poir Stream is at le if ≥ 19 or perer	east intermittent	County:	Stanly	Other e.g. Quad Name: Albemarle, NC

A. Geomorphology Subtotal = 18 Absent Weak Moderate Strong Score

1 ^a . (Continuous bed and bank	0	1	2	3	2
2. 3	Sinuosity	0	1	2	3	2
3. I	In-channel structure: riffle-pool sequence	0	1	2	3	3
4. \$	Soil texture or stream substrate sorting	0	1	2	3	3
5. /	Active/relic floodplain	0	1	2	3	2
	Depositional bars or benches	0	1	2	3	1
7. E	Braided channel	0	1	2	3	0
8. I	Recent alluvial deposits	0	1	2	3	3
9 ^a .]	Natural levees	0	1	2	3	0
10.	Headcuts	0	1	2	3	1
11.	Grade Control	0	0.5	1	1.5	0.5
12.	Natural valley or drainage way	0	0.5	1	1.5	0.5
	Second or greater order channel on existing SS or NRCS map or other documented evidence.	No = 0 Yes = 3		= 3	0	

^a Man-made ditches are not rated; see discussion in manual

B. Hydrology Subtotal = 9					
14. Groundwater flow/discharge	0	1	2	3	3
15. Water in channel and > 48 hrs since rain, or Water in channel dry or growing season	0	1	2	3	2
16. Leaflitter	1.5	1	0.5	0	0.5
17. Sediment on plants or debris	0	0.5	1	1.5	1
18. Organic debris lines or piles (Wrack lines)	0	0.5	1	1.5	1
19. Hydric soils (redoximorphic features) present?	No	= 0	Yes	= 1.5	1.5

C. Biology Subtotal = 8.5					
20 ^b . Fibrous roots in channel	3	2	1	0	3
21 ^b . Rooted plants in channel	3	2	1	0	2
22. Crayfish	0	0.5	1	1.5	0.5
23. Bivalves	0	1	2	3	0
24. Fish	0	0.5	1	1.5	1
25. Amphibians	0	0.5	1	1.5	0.5
26. Macrobenthos (note diversity and abundance)	0	0.5	1	1.5	0.5
27. Filamentous algae; periphyton	0	1	2	3	0
28. Iron oxidizing bacteria/fungus	0	0.5	1	1.5	1
29 ^b . Wetland plants in streambed	FAC = 0.5; F	ACW = 0.75; O	BL = 1.5; SAV =	2.0; Other =	0 ()

^b Items 20 and 21 focus on the presence of upland plants, Item 29 focuses on the presence of aquatic or wetland plants.

Notes: (use back side of this form for additional notes.) SI crayfish, fish, frogs, salamander, amphipods, crayfish

Date:	10/19/2006	Project:	Rockwell Farm Site	Latitude:	
Evaluator:	Todd St.John (KHA)	Site:	UT5 - intermittent	Longitude:	
Total Poir	n ts: 28			Other	
Stream is at least intermittent		County:	unty: Stanly	e.g. Quad Name: Albemarle, NC	
if ≥ 19 or perei	nnial if ≥ 30			o.g. dada Hamo.	

A. Geomorphology Subtotal = 15 Absent Weak Moderate Strong Score

10	7.0000110	moun	mouorato	eneng	000.0
1 ^a . Continuous bed and bank	0	1	2	3	2
2. Sinuosity	0	1	2	3	1
3. In-channel structure: riffle-pool sequence	0	1	2	3	2
4. Soil texture or stream substrate sorting	0	1	2	3	2
5. Active/relic floodplain	0	1	2	3	1
6. Depositional bars or benches	0	1	2	3	1
7. Braided channel	0	1	2	3	0
8. Recent alluvial deposits	0	1	2	3	1
9 ^a . Natural levees	0	1	2	3	0
10. Headcuts	0	1	2	3	2
11. Grade Control	0	0.5	1	1.5	1.5
12. Natural valley or drainage way	0	0.5	1	1.5	1.5
13. Second or greater order channel on existing USGS or NRCS map or other documented evidence.	No = 0 Yes = 3		= 3	0	

^a Man-made ditches are not rated; see discussion in manual

B. Hydrology Subtotal = 6.5					
14. Groundwater flow/discharge	0	1	2	3	1
15. Water in channel and > 48 hrs since rain, or Water in channel dry or growing season	0	1	2	3	2
16. Leaflitter	1.5	1	0.5	0	1.5
17. Sediment on plants or debris	0	0.5	1	1.5	1.5
18. Organic debris lines or piles (Wrack lines)	0	0.5	1	1.5	0.5
19. Hydric soils (redoximorphic features) present?	No	= 0	Yes	= 1.5	0

C. Biology Subtotal = 6.5					
20 ^b . Fibrous roots in channel	3	2	1	0	2
21 ^b . Rooted plants in channel	3	2	1	0	
22. Crayfish	0	0.5	1	1.5	0.5
23. Bivalves	0	1	2	3	0
24. Fish	0	0.5	1	1.5	0
25. Amphibians	0	0.5	1	1.5	0
26. Macrobenthos (note diversity and abundance)	0	0.5	1	1.5	N
27. Filamentous algae; periphyton	0	1	2	3	2
28. Iron oxidizing bacteria/fungus	0	0.5	1	1.5	0
29 ^b . Wetland plants in streambed	FAC = 0.5; F	ACW = 0.75; O	BL = 1.5; SAV =	2.0; Other =	0.75

^b Items 20 and 21 focus on the presence of upland plants, Item 29 focuses on the presence of aquatic or wetland plants.

Notes: (use back side of this form for additional notes.) Ske tadpoles, aquaric beetles, dragonfly larva

Date:	3/9/2007	Project:	Rockwell Pastures	Latitude:	
Evaluator:	Todd St.John (KHA)	Site:	UT6	Longitude:	
Total Poir	n ts: 28			Other	
Stream is at least intermittent		County:	Stanly	e.g. Quad Name: Albemarle, NC	Albemarle, NC
if ≥ 19 or perei	nnial if ≥ 30			,	

Α.	Geomorphology Subtotal = 11.5	Absent	Weak	Moderate	Strong	Score
1 ^a .	Continuous bed and bank	0	1	2	3	3
2.	Sinuosity	0	1	2	3	0
3.	In-channel structure: riffle-pool sequence	0	1	2	3	1
4.	Soil texture or stream substrate sorting	0	1	2	3	2
5.	Active/relic floodplain	0	1	2	3	0
6.	Depositional bars or benches	0	1	2	3	1
7.	Braided channel	0	1	2	3	0
	Recent alluvial deposits	0	1	2	3	2
9 ^a .	Natural levees	0	1	2	3	0
10.	Headcuts	0	1	2	3	1
11.	Grade Control	0	0.5	1	1.5	0
12.	Natural valley or drainage way	0	0.5	1	1.5	1.5
	Second or greater order channel on existing GS or NRCS map or other documented evidence.	No = 0		Yes	= 3	0

^a Man-made ditches are not rated; see discussion in manual

B. Hydrology Subtotal = 8.5					
14. Groundwater flow/discharge	0	1	2	3	2
15. Water in channel and > 48 hrs since rain, or Water in channel dry or growing season	0	1	2	3	2
16. Leaflitter	1.5	1	0.5	0	1.5
17. Sediment on plants or debris	0	0.5	1	1.5	1.5
18. Organic debris lines or piles (Wrack lines)	0	0.5	1	1.5	0
19. Hydric soils (redoximorphic features) present?	No	= 0	Yes	= 1.5	1.5

C. Biology Subtotal = 8					
20 ^b . Fibrous roots in channel	3	2	1	0	3
21 ^b . Rooted plants in channel	3	2	1	0	3
22. Crayfish	0	0.5	1	1.5	0
23. Bivalves	0	1	2	3	0
24. Fish	0	0.5	1	1.5	0
25. Amphibians	0	0.5	1	1.5	0
26. Macrobenthos (note diversity and abundance)	0	0.5	1	1.5	0.5
27. Filamentous algae; periphyton	0	1	2	3	0
28. Iron oxidizing bacteria/fungus	0	0.5	1	1.5	0
29 ^b . Wetland plants in streambed	FAC = 0.5; F	ACW = 0.75; OI	BL = 1.5; SAV =	2.0; Other = 0	D 1.5

^b Items 20 and 21 focus on the presence of upland plants, Item 29 focuses on the presence of aquatic or wetland plants.

Notes: (use back side of this form for additional notes.) Ske left-handed snails, crayfish, amphipods, chironomids, ditched

Date:	3/9/2007	Project:	Rockwell Pastures	Latitude:	
Evaluator:	Todd St.John (KHA)	Site:	UT7 lower	Longitude:	
Total Poir	n ts: 33			Other	
Stream is at least intermittent		County:	Stanly	e.g. Quad Name:	Albemarle, NC
if ≥ 19 or perei	nnial if ≥ 30			g ranoi	

A. Geomorphology Subtotal = 17	7.5 Absent	Weak	Moderate	Strong	Score
1 ^a . Continuous bed and bank	0	1	2	3	3
2. Sinuosity	0	1	2	3	1
3. In-channel structure: riffle-pool sequence	e 0	1	2	3	2
4. Soil texture or stream substrate sorting	0	1	2	3	3
5. Active/relic floodplain	0	1	2	3	2
6. Depositional bars or benches	0	1	2	3	2
7. Braided channel	0	1	2	3	0
Recent alluvial deposits	0	1	2	3	1
9 ^ª . Natural levees	0	1	2	3	0
10. Headcuts	0	1	2	3	1
11. Grade Control	0	0.5	1	1.5	1
12. Natural valley or drainage way	0	0.5	1	1.5	1.5
13. Second or greater order channel on exist USGS or NRCS map or other documented existence of the second s		No = 0		= 3	0

^a Man-made ditches are not rated; see discussion in manual

B. Hydrology Subtotal = 8.5					
14. Groundwater flow/discharge	0	1	2	3	2
15. Water in channel and > 48 hrs since rain, or Water in channel dry or growing season	0	1	2	3	2
16. Leaflitter	1.5	1	0.5	0	1.5
17. Sediment on plants or debris	0	0.5	1	1.5	1
18. Organic debris lines or piles (Wrack lines)	0	0.5	1	1.5	0.5
19. Hydric soils (redoximorphic features) present?	No	= 0	Yes	= 1.5	1.5

C. Biology Subtotal =

20 ^b . Fibrous roots in channel	3	2	1	0	3		
21 ^b . Rooted plants in channel	3	2	1	0	2		
22. Crayfish	0	0.5	1	1.5	X		
23. Bivalves	0	1	2	3	0		
24. Fish	0	0.5	1	1.5	0		
25. Amphibians	0	0.5	1	1.5	0		
26. Macrobenthos (note diversity and abundance)	0	0.5	1	1.5	1		
27. Filamentous algae; periphyton	0	1	2	3	0		
28. Iron oxidizing bacteria/fungus	0	0.5	1	1.5	0		
29 ^b . Wetland plants in streambed	FAC = 0.5; F/	FAC = 0.5; FACW = 0.75; OBL = 1.5; SAV = 2.0; Other = 0					

^b Items 20 and 21 focus on the presence of upland plants, Item 29 focuses on the presence of aquatic or wetland plants.

Notes: (use back side of this form for additional notes.) Ske left-handed snails, crayfish, amphipods, chironomids, ditched

7

Date:	3/9/2007	Project:	Rockwell Pastures	Latitude:	
Evaluator:	Todd St.John (KHA)	Site:	UT7 upper	Longitude:	
Total Poir	n ts: 35			Other	
Stream is at least intermittent		County:	Stanly	e.g. Quad Name: Albe	Albemarle, NC
if ≥ 19 or perei	nnial if ≥ 30			g ranoi	

A. Geomorphology Subtotal = 17 Absent Weak Moderate Strong Score

	Aboont	moun	modorato	onong	00010
1 ^a . Continuous bed and bank	0	1	2	3	3
2. Sinuosity	0	1	2	3	0
3. In-channel structure: riffle-pool sequence	0	1	2	3	3
Soil texture or stream substrate sorting	0	1	2	3	3
5. Active/relic floodplain	0	1	2	3	0
6. Depositional bars or benches	0	1	2	3	2
7. Braided channel	0	1	2	3	0
8. Recent alluvial deposits	0	1	2	3	0
9 ^a . Natural levees	0	1	2	3	0
10. Headcuts	0	1	2	3	3
11. Grade Control	0	0.5	1	1.5	1.5
12. Natural valley or drainage way	0	0.5	1	1.5	1.5
13. Second or greater order channel on existing USGS or NRCS map or other documented evidence.	No = 0		Yes	= 3	0

^a Man-made ditches are not rated; see discussion in manual

B. Hydrology Subtotal = 8					
14. Groundwater flow/discharge	0	1	2	3	2
15. Water in channel and > 48 hrs since rain, or Water in channel dry or growing season	0	1	2	3	2
16. Leaflitter	1.5	1	0.5	0	1.5
17. Sediment on plants or debris	0	0.5	1	1.5	0.5
18. Organic debris lines or piles (Wrack lines)	0	0.5	1	1.5	0.5
19. Hydric soils (redoximorphic features) present?	No	= 0	Yes	= 1.5	1.5

C. Biology Subtotal = 10					
20 ^b . Fibrous roots in channel	3	2	1	0	3
21 ^b . Rooted plants in channel	3	2	1	0	3
22. Crayfish	0	0.5	1	1.5	1
23. Bivalves	0	1	2	3	0
24. Fish	0	0.5	1	1.5	0
25. Amphibians	0	0.5	1	1.5	0
26. Macrobenthos (note diversity and abundance)	0	0.5	1	1.5	1
27. Filamentous algae; periphyton	0	1	2	3	2
28. Iron oxidizing bacteria/fungus	0	0.5	1	1.5	0
29 ^b . Wetland plants in streambed	FAC = 0.5; F	ACW = 0.75; O	BL = 1.5; SAV =	= 2.0; Other =	0

^b Items 20 and 21 focus on the presence of upland plants, Item 29 focuses on the presence of aquatic or wetland plants.

Notes: (use back side of this form for additional notes.) Sketch: <u>crayfish, amphipods, strong headcut, bedrock, lower part ditched</u>

Project Site USACE Routine Wetland Determination Data Forms

DATA FORM

ROUTINE WETLAND DETERMINATION

1987 COE Wetlands Delineation Manual

Project/Site:	Rockwell		Date:	12/5/2007
Applicant/Owner:			County:	Stanly
Investigator:	тс		State:	NC
Do Normal Circumstan	ces exist on this site?	Y	Community ID:	W2
Is the site significantly	disturbed (Atypical Situation?)	Y	Transect ID:	
Is the area a potential F	Problem Area?	Ν	Plot ID:	
		ding FACI	Dominant Plant Species 9	
Hydrology: RECORDED DATA: Stream, Lake, or Tide Aerial Photographs Other No Recorded Data Ave FIELD OBSERVATIONS: Depth to Surface Water: Depth to Surface Water in P Depth to Saturated Soil: WETLAND HYDROLOG Saturation in upper 12	ailable Pit: >12 (in) >12 (in) 10 (in) Y INDICATORS:		PRIMARY INDICATORS Inundated Saturated in Upper 12 Water Marks Drift Lines x Sediment Deposits x Drainage Patterns in N SECONDARY INDICATORS Water Stained Leaves Local Soil Suvey Data Fac-Neutral Test Other	? inches Wetlands <i>ORS:</i> s in Upper 12 inches

SOILS

Map Unit Name	
(Series and Phrase):	

Taxonomy (Subgroup):

PROFILE DESCRIPTION

Depth		Matrix Color	Mottle Colors	Mottle	Texture, Concretions,
(inches)	Horizon	(Munsell Moist)	(Munsell Moist)	Abundance/Contrast	Structure, etc.
0-5	A	10YR 5/3			Loam
5-12	В	10YR 5/1	10YR 6/6	30%	Clay loam

HYDRIC SOIL INDICATORS

Histosol
Histic Epipedon
Histic Epipedon Sulfidic Odor
Aquic Moisture Regime
-

x Reducing Conditions
 x Gleyed or Low-Chroma Colors
 Concretions
 High Organic Streaking in
 Surface Layer in Sandy Soils

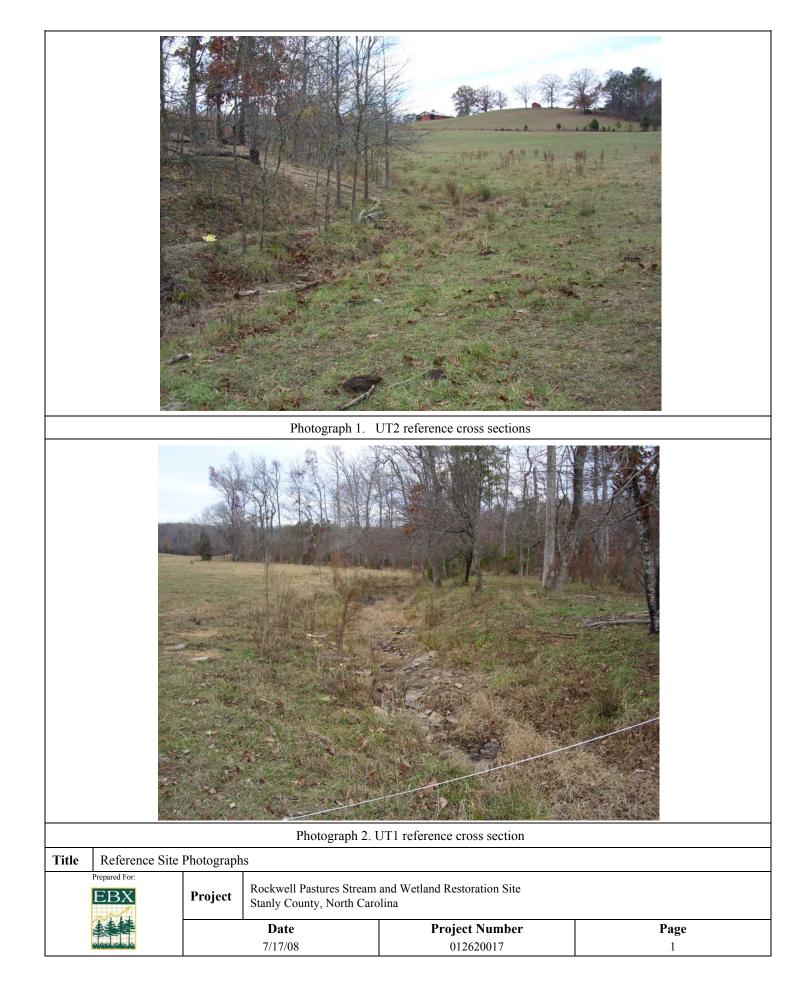
Organic Streaking in Sandy Soils
Listed on Local Hydric Soils List
Listed on National Hydric Soils List
Other (Explain in remarks)

Drainage Class: Field Observations

Confirm Mapped Type? (Y/N)

Hydric Soil Present? (Y/N) Y

Remarks:


T tormainto:					
WETLAND DETERMINATION	(Y/N)				
Hydrophytic Vegetation Present?		Y	_		
Wetland Hydrology Present?		Y			
Hydric Soils Present?		Y			

Is this sampling point a Wetland?


Remarks:

Reference Site Photos

Reference Site NCDWQ Stream Classification Forms

Date:	9/26/2006	Project:	Rockwell Farm Site	Latitude:	
Evaluator:	Todd St.John (KHA)	Site:	UT1 - perennial	Longitude:	
Total Poir Stream is at le if ≥ 19 or pere	ast intermittent	County:	Staniv	Other e.g. Quad Name:	Albemarle, NC

A. Geomorphology Subtotal = 23	Absent	Weak	Moderate	Strong	Score
1 ^a . Continuous bed and bank	0	1	2	3	3
2. Sinuosity	0	1	2	3	0
3. In-channel structure: riffle-pool sequence	0	1	2	3	3
4. Soil texture or stream substrate sorting	0	1	2	3	3
5. Active/relic floodplain	0	1	2	3	3
6. Depositional bars or benches	0	1	2	3	2
7. Braided channel	0	1	2	3	0
8. Recent alluvial deposits	0	1	2	3	3
9 ^ª . Natural levees	0	1	2	3	Ø
10. Headcuts	0	1	2	3	0
11. Grade Control	0	0.5	1	1.5	1.5
12. Natural valley or drainage way	0	0.5	1	1.5	1.5
13. Second or greater order channel on existing USGS or NRCS map or other documented evidence.	No	= 0	Yes	= 3	3

^a Man-made ditches are not rated; see discussion in manual

9

B. Hydrology Subtotal =

, , , , , , , , , , , , , , , , , , , ,					
14. Groundwater flow/discharge	0	1	2	3	2/////2
15. Water in channel and > 48 hrs since rain, or	0	1	2	3	
Water in channel dry or growing season	0	I	2	5	
16. Leaflitter	1.5	1	0.5	0	0
17. Sediment on plants or debris	0	0.5	1	1.5	
18. Organic debris lines or piles (Wrack lines)	0	0.5	1	1.5	
19. Hydric soils (redoximorphic features) present?	No	= 0	Yes	= 1.5	X.5/////

C. Biology Subtotal = 16.5

20 ^b . Fibrous roots in channel	3	2	1	0	3
21 ^b . Rooted plants in channel	3	2	1	0	3
22. Crayfish	0	0.5	1	1.5	1.5
23. Bivalves	0	1	2	3	0
24. Fish	0	0.5	1	1.5	1.5
25. Amphibians	0	0.5	1	1.5	1.5
26. Macrobenthos (note diversity and abundance)	0	0.5	1	1.5	1.5
27. Filamentous algae; periphyton	0	1	2	3	3
28. Iron oxidizing bacteria/fungus	0	0.5	1	1.5	1.5
29 ^b . Wetland plants in streambed	FAC = 0.5; FA	ACW = 0.75; OE	BL = 1.5; SAV =	2.0; Other = 0	0

^b Items 20 and 21 focus on the presence of upland plants, Item 29 focuses on the presence of aquatic or wetland plants.

Notes: (use back side of this form for additional notes.) crayfish, frogs, amphipods, dragonfly larva

Date:	9/26/2006	Project:	Rockwell Farm Site	Latitude:	
Evaluator:	Todd St.John (KHA)	Site:	UT2 - perennial	Longitude:	
Total Poir Stream is at le if ≥ 19 or pere	east intermittent	County:	Staniv	Other e.g. Quad Name:	Albemarle, NC

Α.	Geomorphology Subtotal = 11.5	Absent	Weak	Moderate	Strong	Score
1 ^a .	Continuous bed and bank	0	1	2	3	2//////
2.	Sinuosity	0	1	2	3	
3.	In-channel structure: riffle-pool sequence	0	1	2	3	
4.	Soil texture or stream substrate sorting	0	1	2	3	
5.	Active/relic floodplain	0	1	2	3	2
6.	Depositional bars or benches	0	1	2	3	
7.	Braided channel	0	1	2	3	0
8.	Recent alluvial deposits	0	1	2	3	0
9 ^a .	Natural levees	0	1	2	3	0
10.	Headcuts	0	1	2	3	
11.	Grade Control	0	0.5	1	1.5	1
12.	Natural valley or drainage way	0	0.5	1	1.5	1.5
	Second or greater order channel on existing GS or NRCS map or other documented evidence.	No	= 0	Yes	= 3	0

^a Man-made ditches are not rated; see discussion in manual

8.5

B. Hydrology Subtotal =

14. Groundwater flow/discharge	0	1	2	3	2//////
15. Water in channel and > 48 hrs since rain, or	0	1	2	3	n, iii
Water in channel dry or growing season	U	I	2	5	
16. Leaflitter	1.5	1	0.5	0	1.5
17. Sediment on plants or debris	0	0.5	1	1.5	0.5
18. Organic debris lines or piles (Wrack lines)	0	0.5	1	1.5	0
19. Hydric soils (redoximorphic features) present?	No	= 0	Yes	= 1.5	////X.5/////

C. Biology Subtotal =

C. Biology Subtotal = 12					
20 ^b . Fibrous roots in channel	3	2	1	0	1
21 ^b . Rooted plants in channel	3	2	1	0	1
22. Crayfish	0	0.5	1	1.5	1.5
23. Bivalves	0	1	2	3	0
24. Fish	0	0.5	1	1.5	1
25. Amphibians	0	0.5	1	1.5	1.5
26. Macrobenthos (note diversity and abundance)	0	0.5	1	1.5	1.5
27. Filamentous algae; periphyton	0	1	2	3	3
28. Iron oxidizing bacteria/fungus	0	0.5	1	1.5	1.5
29 ^b . Wetland plants in streambed	FAC = 0.5; FA	ACW = 0.75; OB	BL = 1.5; SAV =	2.0; Other = 0	1.5

^b Items 20 and 21 focus on the presence of upland plants, Item 29 focuses on the presence of aquatic or wetland plants.

Notes: (use back side of this form for additional notes.) right-handed snails, mayflies, bullfrog tadpoles, minnows

Date:	10/19/2006	Project:	Rockwell Farm Site	Latitude:	
Evaluator:	Todd St.John (KHA)	Site:	UT4 - perennial	Longitude:	
Total Poir Stream is at le if ≥ 19 or pere	east intermittent	County:	Staniv	Other e.g. Quad Name:	Albemarle, NC

A. Geomorphology Subtotal = 18	Absent	Weak	Moderate	Strong	Score
1 ^a . Continuous bed and bank	0	1	2	3	2
2. Sinuosity	0	1	2	3	2
3. In-channel structure: riffle-pool sequence	0	1	2	3	3
4. Soil texture or stream substrate sorting	0	1	2	3	3
5. Active/relic floodplain	0	1	2	3	2
6. Depositional bars or benches	0	1	2	3	
7. Braided channel	0	1	2	3	0
8. Recent alluvial deposits	0	1	2	3	3
9 ^a . Natural levees	0	1	2	3	0
10. Headcuts	0	1	2	3	
11. Grade Control	0	0.5	1	1.5	0.5
12. Natural valley or drainage way	0	0.5	1	1.5	0.5
13. Second or greater order channel on existing USGS or NRCS map or other documented evidence.	No	= 0	Yes	= 3	0

^a Man-made ditches are not rated; see discussion in manual

9

B. Hydrology Subtotal =

14. Groundwater flow/discharge	0	1	2	3	///// /3 ///////
15. Water in channel and > 48 hrs since rain, or	0	1	2	3	
Water in channel dry or growing season	0	1	2	5	<u> </u>
16. Leaflitter	1.5	1	0.5	0	0.5
17. Sediment on plants or debris	0	0.5	1	1.5	
18. Organic debris lines or piles (Wrack lines)	0	0.5	1	1.5	
19. Hydric soils (redoximorphic features) present?	No	= 0	Yes	= 1.5	////X/ 5 //////

C. Biology Subtotal =

C. Biology Subtotal = 8.5					
20 ^b . Fibrous roots in channel	3	2	1	0	3
21 ^b . Rooted plants in channel	3	2	1	0	2
22. Crayfish	0	0.5	1	1.5	0.5
23. Bivalves	0	1	2	3	0
24. Fish	0	0.5	1	1.5	
25. Amphibians	0	0.5	1	1.5	0.5
26. Macrobenthos (note diversity and abundance)	0	0.5	1	1.5	0.5
27. Filamentous algae; periphyton	0	1	2	3	0
28. Iron oxidizing bacteria/fungus	0	0.5	1	1.5	
29 ^b . Wetland plants in streambed	FAC = 0.5; FA	ACW = 0.75; OE	BL = 1.5; SAV =	2.0; Other = 0	0

^b Items 20 and 21 focus on the presence of upland plants, Item 29 focuses on the presence of aquatic or wetland plants.

Notes: (use back side of this form for additional notes.) crayfish, fish, frogs, salamander, amphipods, crayfish

Categorical Exclusion Checklist

Kimley-Horn and Associates, Inc.

January 22, 2008

P.O. Box 33068 Raleigh, North Carolina 27636-3068

Mr. Donnie Brew Environmental Protection Specialist Federal Highway Administration 310 New Bern Avenue, Suite 410 Raleigh, North Carolina 27601

Re: Rockwell Pastures Stream and Wetland Restoration Site Full Delivery Project Stanly County, North Carolina

Dear Mr. Brew:

This letter serves to transmit a Categorical Exclusion Form for Ecosystem Enhancement Program Projects to your agency for the Rockwell Pastures Stream and Wetland Restoration Full Delivery Project for your review and approval.

The Rockwell Pastures Stream and Wetland Restoration Site (Rockwell Pastures) is located in Stanly County, approximately 6 miles southeast of Albemarle, North Carolina (Figure 1). The project proposes restorative work on seven unstable Unnamed Tributaries (UT1, UT2, UT3, UT4, UT5, UT6, and UT7) to David's Creek/Lake Tillery. These streams are highly degraded and unstable due to the channelization and straightening of the channels in the past as well as the ongoing agricultural and livestock operations. The proposed project also includes restorative work on a non-riparian wetland area (W1) which is currently in active agriculture and has been drained by ditches and crowning.

The purpose of this project is to restore the site back to a naturally functioning stream and wetland system. Due to the size of the site and its position in the landscape, the proposed project creates an opportunity^{*} to restore virtually an entire watershed through restoration of the riparian areas and wetlands. Benefits will include improved water quality by reducing sediment load through stabilization and by reducing nutrient and other pollutant input by the addition of forested riparian buffers planted with native species. Improvements to the ecosystem include the addition of in-stream habitat by the use of stream structures and bank revetments such as root wads.

The project will include the restoration of dimension, pattern, and profile to approximately 10,757 linear feet of existing stream channel and the enhancement of approximately 6,426 linear feet of existing stream channel. Stream banks will

TEL 919 677 2000 FAX 919 677 2050

be stabilized using erosion matting, bare-root plantings, and bio-engineering. Instream structures will be constructed to increase turbulence and disturbed oxygen concentrations. Additionally, the proposed project includes the restoration of 1.5 acres of non-riparian wetlands.

I appreciate your assistance with this matter. If you have any questions regarding this application, please do not hesitate to call me at 919.653.5843.

10

Very truly yours,

KIMLEY-HORN AND ASSOCIATES, INC.

Jama Thanbron

Laura Thornbrough Environmental Analyst

Categorical Exclusion Form for Ecosystem Enhancement Program Projects

	Part 1: General Project Information			
Project Name:	Rockwell Pastures Stream and Wetland Restoration Full Delivery Project			
County Name:	Stanly County, North Carolina			
EEP Number:	000624			
Project Sponsor:	Environmental Banc & Exchange, LLC			
Project Contact Name:	Norton Webster			
Project Contact Address:	909 Capability Drive, Suite 3100, Raleigh, North Carolina 27606			
Project Contact E-mail:	norton@ebxusa.com			
EEP Project Manager:	Guy Pearce			
Project Description				

The Rockwell Pastures Restoration Project proposed restorative work on 7 unstable streams as well as the restoration of 1.5 ac of non-riparian wetland. Due to the size of the site and its position in the landscape, the proposed project creates an opportunity to restore virtually an entire watershed through restoration of riparian areas and wetlands. The project will include the restoration of dimension, pattern, and profile to approximately 10,757 LF of existing stream channel and the enhancement of approximately 6,426 LF of existing stream channel. Benefits will include improved water quality by reducing sediment load through stabilization and by reducing nutrient and other pollutant input.

For Official Use Only				
EEP Project Manager				
For Division Administrator				
FHWA				
outstanding issues				
For Division Administrator				
FHWA				

Part 2: All Projects	
Regulation/Question	Response
Coastal Zone Management Act (CZMA)	
1. Is the project located in a CAMA county?	🗌 Yes
	🗌 No
2. Does the project involve ground-disturbing activities within a CAMA Area of	🗌 Yes
Environmental Concern (AEC)?	🗌 No
	□ N/A
3. Has a CAMA permit been secured?	🗌 Yes
	🗌 No
	□ N/A
4. Has NCDCM agreed that the project is consistent with the NC Coastal Management	🗌 Yes
Program?	
	□ N/A
Comprehensive Environmental Response, Compensation and Liability Act (C	
1. Is this a "full-delivery" project?	
	□ No
2. Has the zoning/land use of the subject property and adjacent properties ever been	
designated as commercial or industrial?	
	□ N/A
3. As a result of a limited Phase I Site Assessment, are there known or potential	
hazardous waste sites within or adjacent to the project area?	
4. As a result of a Dhassa I Oita Assessment, and there because an adaptical homeological	□ N/A
4. As a result of a Phase I Site Assessment, are there known or potential hazardous	
waste sites within or adjacent to the project area?	
5. As a result of a Phase II Site Assessment, are there known or potential hazardous	∐ N/A □ Yes
waste sites within the project area?	
6. Is there an approved hazardous mitigation plan?	
o. Is there an approved hazardous mitigation plan:	
	□ N/A
National Historic Preservation Act (Section 106)	
1. Are there properties listed on, or eligible for listing on, the National Register of	☐ Yes
Historic Places in the project area?	
2. Does the project affect such properties and does the SHPO/THPO concur?	
	□ No
	∏ N/A
3. If the effects are adverse, have they been resolved?	Yes
	🗌 No
	🗌 N/A
Uniform Relocation Assistance and Real Property Acquisition Policies Act (Un	iform Act)
1. Is this a "full-delivery" project?	Yes
	🗌 No
2. Does the project require the acquisition of real estate?	🗌 Yes
	🗌 No
	□ N/A
3. Was the property acquisition completed prior to the intent to use federal funds?	🗌 Yes
	🗌 No
	□ N/A
4. Has the owner of the property been informed:	🗌 Yes
* prior to making an offer that the agency does not have condemnation authority; and	🗌 No
* what the fair market value is believed to be?	□ N/A

Part 3: Ground-Disturbing Activities Regulation/Question	Response
American Indian Religious Freedom Act (AIRFA)	
1. Is the project located in a county claimed as "territory" by the Eastern Band of Cherokee Indians?	☐ Yes ☐ No
2. Is the site of religious importance to American Indians?	☐ Yes ☐ No ☐ N/A
3. Is the project listed on, or eligible for listing on, the National Register of Historic Places?	☐ Yes ☐ No ☐ N/A
4. Have the effects of the project on this site been considered?	☐ Yes ☐ No ☐ N/A
Antiquities Act (AA)	
1. Is the project located on Federal lands?	☐ Yes ☐ No
2. Will there be loss or destruction of historic or prehistoric ruins, monuments or objects of antiquity?	☐ Yes ☐ No ☐ N/A
3. Will a permit from the appropriate Federal agency be required?	☐ Yes ☐ No ☐ N/A
4. Has a permit been obtained?	☐ Yes ☐ No ☐ N/A
Archaeological Resources Protection Act (ARPA)	
1. Is the project located on federal or Indian lands (reservation)?	☐ Yes ☐ No
2. Will there be a loss or destruction of archaeological resources?	☐ Yes ☐ No ☐ N/A
3. Will a permit from the appropriate Federal agency be required?	☐ Yes ☐ No ☐ N/A
4. Has a permit been obtained?	☐ Yes ☐ No ☐ N/A
Endangered Species Act (ESA)	
1. Are federal Threatened and Endangered species and/or Designated Critical Habitat listed for the county?	☐ Yes ☐ No
2. Is Designated Critical Habitat or suitable habitat present for listed species?	☐ Yes ☐ No ☐ N/A
3. Are T&E species present or is the project being conducted in Designated Critical Habitat?	☐ Yes ☐ No ☐ N/A
4. Is the project "likely to adversely affect" the species and/or "likely to adversely modify" Designated Critical Habitat?	☐ Yes ☐ No ☐ N/A
5. Does the USFWS/NOAA-Fisheries concur in the effects determination?	☐ Yes ☐ No ☐ N/A
6. Has the USFWS/NOAA-Fisheries rendered a "jeopardy" determination?	☐ Yes ☐ No ☐ N/A

Executive Order 13007 (Indian Sacred Sites)		
1. Is the project located on Federal lands that are within a county claimed as "territory" by the EBCI?	☐ Yes ☐ No	
2. Has the EBCI indicated that Indian sacred sites may be impacted by the proposed project?	Yes	
	🗍 N/A	
3. Have accommodations been made for access to and ceremonial use of Indian sacred sites?	Yes	
Farmland Protection Policy Act (FPPA)	N/A	
1. Will real estate be acquired?	Yes No	
2. Has NRCS determined that the project contains prime, unique, statewide or locally important farmland?	☐ Yes ☐ No ☐ N/A	
3. Has the completed Form AD-1006 been submitted to NRCS?	☐ Yes ☐ No ☐ N/A	
Fish and Wildlife Coordination Act (FWCA)		
1. Will the project impound, divert, channel deepen, or otherwise control/modify any		
water body?	🗌 No	
2. Have the USFWS and the NCWRC been consulted?	└ Yes □ No	
	□ NO □ N/A	
Land and Water Conservation Fund Act (Section 6(f))		
1. Will the project require the conversion of such property to a use other than public, outdoor recreation?	☐ Yes ☐ No	
2. Has the NPS approved of the conversion?		
	□ No □ N/A	
Magnuson-Stevens Fishery Conservation and Management Act (Essential Fisher)		
1. Is the project located in an estuarine system?	T Yes	
	🗌 No	
2. Is suitable habitat present for EFH-protected species?	☐ Yes ☐ No	
3. Is sufficient design information available to make a determination of the effect of the	☐ Yes	
project on EFH?	□ No □ N/A	
4. Will the project adversely affect EFH?	🗌 Yes	
	□ No □ N/A	
5. Has consultation with NOAA-Fisheries occurred?		
	□ N/A	
Migratory Bird Treaty Act (MBTA)		
1. Does the USFWS have any recommendations with the project relative to the MBTA?	☐ Yes ☐ No	
2. Have the USFWS recommendations been incorporated?	🗌 Yes	
	□ No □ N/A	
Wilderness Act		
1. Is the project in a Wilderness area?	🗌 Yes	
	☐ No	
2. Has a special use permit and/or easement been obtained from the maintaining		
federal agency?	□ No □ N/A	

Memorandum

To:	Donnie Brew Federal Highway Administration
From:	Laura Thornbrough Kimley-Horn and Associates, Inc.
Date:	January 22, 2008
Subject:	Threatened and Endangered Species Rockwell Pastures Stream and Wetland Restoration Site Stanly County, NC

This memo is intended to document the absence/presence of threatened and endangered species or suitable habitat at the Rockwell Pastures Stream and Wetland Restoration Site.

The U.S. Fish and Wildlife Service (USFWS) database (updated January 16, 2008) lists one federally endangered species for Stanly County, NC: Schweinitz's sunflower (*Helianthus schweinitzii*). Yadkin River goldenrod (*Solidago plumosa*) and Georgia aster (*Symphyotrichum georgianum*) are identified as candidate species; however these species do not receive federal protection. The bald eagle (*Haliaeetus leucocephalus*) is protected under the Bald and Golden Eagle Protection Act. Review of the Natural Heritage Program (NHP) database of documented occurrences did not reveal the presence of any of these species within a one-mile radius of the proposed mitigation site.

A project scoping letter was sent to Ms. Marella Buncick of the U.S. Fish and Wildlife Service (December 10, 2007) requesting any information or comments that the USFWS may have with regards to this stream and wetland restoration project. Ms. Buncick has not responded with any comments. Therefore, it is not anticipated that this project will have any negative affect on suitable habitat for the threatened and endangered species listed for Stanly County, NC.

Schweinitz's Sunflower (Helianthus schweinitzii)

Schweinitz's sunflower is a perennial herb, usually 3 to 6 feet tall with yellow flowers which occur in late August to October. Schweinitz's sunflower is found in relatively open habitats such as roadsides, maintained rights-of-way, early successional fields, and woodland openings. Generally, Schweinitz's sunflower occurs on shallow, poorly drained, clayey and/or rocky soils.

Marginal habitat for Schweinitz's sunflower exists along the agricultural field edges at the Rockwell Pastures property; however the frequent disturbance of the site makes these areas unfavorable. The majority of this site is used as open active agricultural fields, void of any native vegetation. Site soils are predominantly deep and moderately to welldrained. No occurrences of Schweinitz's sunflower have been documented in the NHP database within a one-mile radius of the proposed mitigation site and presence of this species has not been observed by KHA or EBX biologists during site investigations conducted during Schweinitz's sunflower flowering season.

BIOLOGICAL CONCLUSION: NO EFFECT.

Bald Eagle (*Haliaeetus leucocephalus*)

The bald eagle is a large raptor which typically inhabits the shorelines of large rivers, lakes, and ponds. Bald eagles construct nests in large trees near the shoreline and make use of the large water bodies for foraging.

Suitable habitat for bald eagle does not exist within the proposed mitigation areas, as there are no large bodies of water on or near the proposed project property. No occurrences of bald eagle have been documented in the NHP database within a one-mile radius of the proposed mitigation site and presence of this species or of suitable habitat for this species has not been observed by EBX or KHA biologists during site investigations.

BIOLOGICAL CONCLUSION: NO EFFECT.

Yadkin River Goldenrod (Solidago plumosa)

Yadkin River goldenrod is a perennial herb, endemic to the Yadkin River in North Carolina. Currently, plants are known to exist in only two locations, within 2 kilometers of each other, along the shoreline of the Yadkin River. This species is listed as a Candidate species by the USFWS.

Habitat for Yadkin River goldenrod does not exist on the Rockwell Pastures property due to the lack of flood scouring, the establishment and spread of invasive species, and the clearing of native vegetation for agricultural purposes. The majority of this site is used as open active agricultural fields, void of any native vegetation.

No occurrences of Yadkin River goldenrod have been documented in the NHP database within a one-mile radius of the proposed mitigation site and presence of this species has not been observed by KHA or EBX biologists during site investigations.

BIOLOGICAL CONCLUSION: NO EFFECT.

Georgia Aster (Symphyotrichum georgianum)

Georgia aster is a perennial herb, distinguished by its large flower heads with dark purple rays up to 2 cm long. Disc flowers are white with purplish tips on the corollas. Blooms first appear in early October and continue into mid-November. Georgia aster is found in dry open woods, roadsides, maintained rights-of-way, and woodland openings in dry oakpine flatwoods and uplands in the piedmont region of the state. This species is most likely a relic species of the post oak-savanna communities that existed prior to fire suppression. Georgia aster is listed as a Candidate species by the USFWS.

Marginal habitat for Georgia aster exists along the agricultural field edges at the Rockwell Pastures property where the frequent disturbances of the site mimic natural disturbances; however the majority of this site is used as open active agricultural fields, void of any native vegetation.

No occurrences of Georgia aster have been documented in the NHP database within a one-mile radius of the proposed mitigation site and presence of this species has not been observed by KHA or EBX biologists during site investigations. The USFWS lists the record status for Georgia aster as "historic", meaning the species was last observed in Stanly County more than 50 years ago.

BIOLOGICAL CONCLUSION: NO EFFECT.

December 10, 2007

Marella Buncick, U.S. Fish and Wildlife Service Asheville Field Office 160 Zillicoa Street Asheville, North Carolina 28801

Re: Rockwell Pastures Stream and Wetland Restoration Site Full Delivery Project Stanly County, North Carolina

Dear Ms. Buncick,

Kimley-Horn and Associates, Inc. is writing this letter on behalf of our client, Environmental Banc & Exchange, LLC, to request a no effect determination from your agency regarding a proposed stream and wetland restoration project.

The Rockwell Pastures Stream and Wetland Restoration Site (Rockwell Pastures) is located in Stanly County, approximately 6 miles southeast of Albemarle, North Carolina (Figure 1). The project proposes restorative work on seven unstable Unnamed Tributaries (UT1, UT2, UT3, UT4, UT5, UT6, and UT7) to David's Creek/Lake Tillery. These streams are highly degraded and unstable due to the channelization and straightening of the channels in the past as well as the ongoing agricultural and livestock operations. The proposed project also includes restorative work on a non-riparian wetland area (W1) which is currently in active agriculture and has been drained by ditches and crowning.

The purpose of this project is to restore the site back to a naturally functioning stream and wetland system. Due to the size of the site and its position in the landscape, the proposed project creates an opportunity to restore virtually an entire watershed through restoration of the riparian areas and wetlands. Benefits will include improved water quality by reducing sediment load through stabilization and by reducing nutrient and other pollutant input by the addition of forested riparian buffers planted with native species. Improvements to the ecosystem include the addition of in-stream habitat by the use of stream structures and bank revetments such as root wads

The project will include the restoration of dimension, pattern, and profile to approximately 10,757 linear feet of existing stream channel and the enhancement of approximately 6,426 linear feet of existing stream channel. Stream banks will be

P O Box 33068 Raleigh, North Carolina 27636-3068

1

stabilized using erosion matting, bare-root plantings, and bio-engineering. In-stream structures will be constructed to increase turbulence and disturbed oxygen concentrations. Additionally, the proposed project includes the restoration of 1.5 acres of non-riparian wetlands

According to the U.S. Fish & Wildlife Service internet list (updated 11/05/2007; accessed 12/03/2007), there is one endangered species, two candidate species, and ten federal species of concern potentially occurring in Stanly County. Schweinitz's sunflower (*Helianthus schweinitzii*) is the only species listed as endangered for this county. The bald eagle (*Haliaeetus leucocephalus*) is protected under the Bald and Golden Eagle Protection Act. It is unlikely that any of these species will be negatively affected by this project.

Specifically, we would like information that the area described above ---

- is not located in an officially designated wildlife refuge
- will not affect listed threatened or endangered species or designated critical habitats; will not jeopardize the continued existence of any proposed endangered or threatened species or likely result in the destruction or adverse modification of proposed critical habitats, as determined by the Secretary of the Interior pursuant to the Endangered Species Act of 1973

Additionally, we request that you please include —

- Any known information for each species listed in Stanly County, NC
- Comments on any possible issues that might emerge with respect to endangered species, migratory birds or other trust resources from the construction of the proposed project

We would appreciate a reply from you as soon as possible. Please either mail or fax (919-677-2050) your reply to my attention. If you have any questions regarding this request or the extent of site disturbance associated with this project, please feel free to contact me at (919) 653-5843.

If we have not heard from you in 30 days we will assume that our species list is correct, that you do not have any comments regarding associated laws, and that you do not have any information relevant to this project at the current time.

Very truly yours,

KIMLEY-HORN AND ASSOCIATES, INC.

was

Laura Thornbrough Environmental Analyst

Fred A. Harris, Interim Executive Director

20 December 2007

Ms. Laura Thornbrough, Environmental Analyst Kimley-Horn and Associates, Inc. P.O. Box 33068 Raleigh, NC 27636-3068

Subject: Rockwell Pastures Stream and Wetland Restoration Site, Stanly County, North Carolina.

Dear Ms. Thornbrough:

Biologists with the North Carolina Wildlife Resources Commission have reviewed the subject document. Our comments are provided in accordance with provisions of the Fish and Wildlife Coordination Act (48 Stat. 401, as amended; 16 U.S.C. 661-667d) and North Carolina General Statutes (G.S. 113-131 et seq.).

The proposed project includes restoration of dimension, pattern and profile to approximately 10,757 linear feet of stream channel and enhancement of approximately 6,426 linear feet of stream channel on seven unnamed tributaries to David's Creek/Lake Tillery in the Yadkin-Pee Dee River basin. Stream banks will be stabilized using erosion matting, bare-root plantings, and bioengineering structures. The streams are highly degraded and unstable due to channelization, straightening, and ongoing agricultural and livestock operations. Also, restoration of 1.5 acres of non-riparian wetlands is proposed.

Stream and wetland restoration projects often improve water quality and aquatic habitat. We recommend establishing native, forested buffers in riparian areas to improve terrestrial habitat and provide a travel corridor for wildlife species. Provided natural channel design methods are used and measures are taken to minimize erosion and sedimentation from construction/restoration activities, we do not anticipate the project to result in significant adverse impacts to aquatic and terrestrial wildlife resources.

Thank you for the opportunity to review this project. If you require further assistance, please contact our office at (336) 449-7625.

Sincerely,

Shan & Bugart

Shari L. Bryant Piedmont Region Coordinator Habitat Conservation Program

Mailing Address: Division of Inland Fisheries • 1721 Mail Service Center • Raleigh, NC 27699-1721 Telephone: (919) 707-0220 • Fax: (919) 707-0028

December 10, 2007

Shannon Deaton, North Carolina Wildlife Resource Commission Division of Inland Fisheries 1721 Mail Service Center Raleigh, NC 27699

Re: Rockwell Pastures Stream and Wetland Restoration Site Full Delivery Project Stanly County, North Carolina

Dear Ms. Deaton,

Kimley-Horn and Associates, Inc. is writing this letter on behalf of our client, Environmental Banc & Exchange, LLC, to request review and comment on any possible issues that might emerge with respect to fish and wildlife issues associated with a proposed stream and wetland restoration project.

The Rockwell Pastures Stream and Wetland Restoration Site (Rockwell Pastures) is located in Stanly County, approximately 6 miles southeast of Albemarle, North Carolina (Figure 1). The project proposes restorative work on seven unstable Unnamed Tributaries (UT1, UT2, UT3, UT4, UT5, UT6, and UT7) to David's Creek/Lake Tillery. These streams are highly degraded and unstable due to the channelization and straightening of the channels in the past as well as the ongoing agricultural and livestock operations. The proposed project also includes restorative work on a non-riparian wetland area (W1) which is currently in active agriculture and has been drained by ditches and crowning.

The purpose of this project is to restore the site back to a naturally functioning stream and wetland system. Due to the size of the site and its position in the landscape, the proposed project creates an opportunity to restore virtually an entire watershed through restoration of the riparian areas and wetlands. Benefits will include improved water quality by reducing sediment load through stabilization and by reducing nutrient and other pollutant input by the addition of forested riparian buffers planted with native species. Improvements to the ecosystem include the addition of in-stream habitat by the use of stream structures and bank revetments such as root wads.

The project will include the restoration of dimension, pattern, and profile to approximately 10,757 linear feet of existing stream channel and the enhancement of

P O. Box 33068 Raleigh, North Carolina 27636-3068

躑

approximately 6,426 linear feet of existing stream channel. Stream banks will be stabilized using erosion matting, bare-root plantings, and bio-engineering. In-stream structures will be constructed to increase turbulence and disturbed oxygen concentrations. Additionally, the proposed project includes the restoration of 1.5 acres of non-riparian wetlands.

We would appreciate a reply from you as soon as possible. Please either mail or fax (919-677-2050) your reply to my attention. If you have any questions regarding this request or the extent of site disturbance associated with this project, please feel free to contact me at (919) 653-5843.

Very truly yours,

KIMLEY-HORN AND ASSOCIATES, INC.

aura thombroug ____

Laura Thornbrough Environmental Analyst

cc:

Guy Pearce Ecosystem Enhancement Program 1652 Mail Service Center Raleigh, North Carolina 27699

Norton Webster Environmental Banc & Exchange 909 Capability Drive, Suite 3100 Raleigh, North Carolina 27606

۰.

RECEVED

JAN 03 2008

KIMLEY-HORM ENVIR

North Carolina Department of Cultural Resources

State Historic Preservation Office Peter B. Sandbeck, Administrator

Michael F Easley, Governor Lisbeth C. Evans, Secretary Jeffrey J Crow, Deputy Secretary

December 27, 2007

Laura Thornbrough Kimley-Horn and Associates, Inc. PO Box 33068 Raleigh, NC 27636-3068

Office of Archives and History Division of Historical Resources David Brook, Director

Rockwell Pastures Stream and Wetland Restoration, Stanly County, ER 07-2679 Re:

Dear Ms Thornbrough:

Thank you for your letter of December 10, 2007, concerning the above project

We have conducted a review of the project and are aware of no historic resources which would be affected by the project. Therefore, we have no comment on the project as proposed.

The above comments are made pursuant to Section 106 of the National Historic Preservation Act and the Advisory Council on Historic Preservation's Regulations for Compliance with Section 106 codified at 36 CFR Part 800.

Thank you for your cooperation and consideration. If you have questions concerning the above comment, please contact Renee Gledhill-Earley, environmental review coordinator, at 919-807-6579. In all future communication concerning this project, please cite the above-referenced tracking number.

Sincerely,

Kener Medhill - Carley Peter Sandbeck

December 10, 2007

Ms. Renee Gledhill-Earley Environmental Review Coordinator North Carolina State Historic Preservation Office 4617 Mail Service Center Raleigh, North Carolina 27699-4617

Re: Rockwell Pastures Stream and Wetland Restoration Site Full Delivery Project Stanly County, North Carolina

Dear Ms. Gledhill-Earley,

Kimley-Horn and Associates, Inc is writing this letter on behalf of our client, Environmental Banc & Exchange, LLC, to request review and comment on any possible issues that might emerge with respect to archaeological or cultural resources associated with a potential stream and wetland restoration project.

The Rockwell Pastures Stream and Wetland Restoration Site (Rockwell Pastures) is located in Stanly County, approximately 6 miles southeast of Albemarle, North Carolina (Figure 1). The project proposes restorative work on seven unstable Unnamed Tributaries (UT1, UT2, UT3, UT4, UT5, UT6, and UT7) to David's Creek/Lake Tillery. These streams are highly degraded and unstable due to the channelization and straightening of the channels in the past as well as the ongoing agricultural and livestock operations. The proposed project also includes restorative work on a non-riparian wetland area (W1) which is currently in active agriculture and has been drained by ditches and crowning.

The purpose of this project is to restore the site back to a naturally functioning stream and wetland system. Due to the size of the site and its position in the landscape, the proposed project creates an opportunity to restore virtually an entire watershed through restoration of the riparian areas and wetlands. Benefits will include improved water quality by reducing sediment load through stabilization and by reducing nutrient and other pollutant input by the addition of forested riparian buffers planted with native species. Improvements to the ecosystem include the addition of in-stream habitat by the use of stream structures and bank revetments such as root wads.

The project will include the restoration of dimension, pattern, and profile to approximately 10,757 linear feet of existing stream channel and the enhancement of

南

P.O. Box 33068 Raleigh, North Carolina 27636-3068

approximately 6,426 linear feet of existing stream channel. Stream banks will be stabilized using erosion matting, bare-root plantings, and bio-engineering. In-stream structures will be constructed to increase turbulence and disturbed oxygen concentrations. Additionally, the proposed project includes the restoration of 1.5 acres of non-riparian wetlands.

No architectural structures or archeological artifacts have been observed or noted during preliminary surveys of the site for restoration purposes. In addition, the majority of the site has historically been disturbed due to agricultural purposes such as tilling and grazing. Project site photographs are enclosed with this letter.

We ask that you review this site based on the attached information to determine the presence of any historic properties.

We would appreciate a reply from you as soon as possible. Please either mail or fax (919-677-2050) your reply to my attention. If you have any questions regarding this request or the extent of site disturbance associated with this project, please feel free to contact me at (919) 653-5843.

Very truly yours,

KIMLEY-HORN AND ASSOCIATES, INC.

awa Thombroyh

Laura Thornbrough Environmental Analyst

cc: Guy Pearce Ecosystem Enhancement Program 1652 Mail Service Center Raleigh, North Carolina 27699

Norton Webster Environmental Banc & Exchange 909 Capability Drive, Suite 3100 Raleigh, North Carolina 27606

U.S. Department of Agriculture FARMLAND CONVERSION IMPACT RATING

PART I (To be completed by Federal Agency)			Date Of Land Evaluation Request 12/11/07					
Name Of Project Rockwell Pastures Stream and Wetland Restoratio			Federal Agency Involved FHWA					
Proposed Land Use Stream and Wetland Restoration			County And State Stanly, North Carolina					
			est R	eceived By 1				
PART II (To be completed by NRCS)					12-	11-200		
Does the site contain prime, unique, statewide o (If no, the FPPA does not apply do not comple	ete additional parts (of this form)	land? Yes No f this form) X			0 150		
Major Crop(s)					Amount Of Farmland As Defined in FPPA Acres: 162996 %55			
Name Of Land Evaluation System Used	Name Of Local Site A		lyster	n		Evaluation Retu		
STANLY LE	///	me_				2-18-	2001	
PART III (To be completed by Federal Agency)				Site A	Alternativ Site B	ve Site Rating Site C	Site D	
A. Total Acres To Be Converted Directly			58.	6				
B. Total Acres To Be Converted Indirectly			0.0					
C. Total Acres In Site			58.	6	0.0	0.0	0.0	
PART IV (To be completed by NRCS) Land Evaluation	ation Information							
A. Total Acres Prime And Unique Farmland			Z	15.20				
B. Total Acres Statewide And Local Important F	armland	,, <u></u>		3.24				
C. Percentage Of Farmland In County Or Local	Govt. Unit To Be Co	onverted	0	.0297				
D. Percentage Of Farmland In Govt. Jurisdiction With	Same Or Higher Relat	ive Value	4	02.9				
PART V (To be completed by NRCS) Land Evalua Relative Value Of Farmland To Be Convert		0 Points)	ø	63	0	o	0	
PART VI (To be completed by Federal Agency) Site Assessment Criteria (These criteria are explained in 7	CFR 658 5(b)	Maximum Points						
1. Area In Nonurban Use				15				
2. Perimeter In Nonurban Use				10				
3. Percent Of Site Being Farmed				16				
Protection Provided By State And Local Gov	ernment			D				
5. Distance From Urban Builtup Area				15				
6. Distance To Urban Support Services			<u> </u>	10				
7. Size Of Present Farm Unit Compared To Ave	erage			10				
8. Creation Of Nonfarmable Farmland			<u> </u>	0				
9. Availability Of Farm Support Services				Ч				
10. On-Farm Investments				5				
11. Effects Of Conversion On Farm Support Ser	vices		ļ	0				
12. Compatibility With Existing Agricultural Use				0				
TOTAL SITE ASSESSMENT POINTS		160	X	85	0	0	0	
PART VII (To be completed by Federal Agency)								
Relative Value Of Farmland (From Part V)		100	Ø	63	0	0	0	
Total Site Assessment (From Part VI above or a local site assessment)		160	ø	85	0	0	0	
TOTAL POINTS (Total of above 2 lines)		260	a	148	0	0	0	
Site Selected: A Da	ate Of Selection	2/21/20	207	7-		lite Assessment es 🔲	Used? No 🕱	
Reason For Selection:				-	1			

site A was only available site

December 11, 2007

Alan Walters Resource Soil Scientist Natural Resources Conservation Service 530 West Innes Street Salisbury, NC 28144

Re: Rockwell Pastures Stream and Wetland Restoration Site Full Delivery Project Stanly County, North Carolina

Dear Mr. Walters,

Kimley-Horn and Associates, Inc. (KHA) is writing this letter on behalf of our client, Environmental Banc & Exchange (EBX), to request input from your agency regarding the proposed Rockwell Pastures Stream and Wetland Restoration Site (Rockwell Pastures) located in Stanly County, approximately 6 miles southeast of Albemarle, North Carolina, and potential effects it may have on farmland resources. We have completed sections I and III of the enclosed Form AD-1006. A location map, USGS topographic map, soils map, and site overview map are also included.

The project proposes restorative work on seven unstable Unnamed Tributaries (UT1, UT2, UT3, UT4, UT5, UT6, and UT7) to David's Creek/Lake Tillery. These streams are highly degraded and unstable due to the channelization and straightening of the channels in the past as well as the ongoing agricultural and livestock operations. The proposed project also includes restorative work on a non-riparian wetland area (W1) which is currently in active agriculture and has been drained by ditches and crowning.

The purpose of this project is to restore the site back to a naturally functioning stream and wetland system. Due to the size of the site and its position in the landscape, the proposed project creates an opportunity to restore virtually an entire watershed through restoration of the riparian areas and wetlands. Benefits will include improved water quality by reducing sediment load through stabilization and by reducing nutrient and other pollutant input by the addition of forested riparian buffers planted with native species. Improvements to the ecosystem include the addition of in-stream habitat by the use of stream structures and bank revetments such as root wads.

P O Box 33068 Raleigh, North Carolina 27636-3068

Ø

The project will include the restoration of dimension, pattern, and profile to approximately 10,757 linear feet of existing stream channel and the enhancement of approximately 6,426 linear feet of existing stream channel. Stream banks will be stabilized using erosion matting, bare-root plantings, and bio-engineering. In-stream structures will be constructed to increase turbulence and disturbed oxygen concentrations. Additionally, the proposed project includes the restoration of 1.5 acres of non-riparian wetlands.

We would appreciate a reply from you as soon as possible. Please either mail or fax (919-677-2050) your reply to my attention. If you have any questions regarding this request or the extent of site disturbance associated with this project, please feel free to contact me at (919) 653-5843.

Very truly yours,

KIMLEY-HORN AND ASSOCIATES, INC. Laura Thornbrough

Environmental Analyst

The EDR Radius Map with GeoCheck[®]

Rockwell Pastures 44188 A Dennis Road Albemarle, NC 28001

Inquiry Number: 2119602.2s

January 14, 2008

EDR[®] Environmental Data Resources Inc

The Standard in Environmental Risk Information

440 Wheelers Farms Road Milford, Connecticut 06461

Nationwide Customer Service

 Telephone:
 1-800-352-0050

 Fax:
 1-800-231-6802

 Internet:
 www.edrnet.com

A search of available environmental records was conducted by Environmental Data Resources, Inc (EDR). The report was designed to assist parties seeking to meet the search requirements of EPA's Standards and Practices for All Appropriate Inquiries (40 CFR Part 312), the ASTM Standard Practice for Environmental Site Assessments (E 1527-05) or custom requirements developed for the evaluation of environmental risk associated with a parcel of real estate.

TARGET PROPERTY INFORMATION

ADDRESS

44188 A DENNIS ROAD ALBEMARLE, NC 28001

COORDINATES

Latitude (North):	35.278290 - 35° 16' 41.8"
Longitude (West):	80.134810 - 80° 8' 5.3''
Universal Tranverse Mercator:	Zone 17
UTM X (Meters):	578684.6
UTM Y (Meters):	3904049.8
Elevation:	360 ft. above sea level

USGS TOPOGRAPHIC MAP ASSOCIATED WITH TARGET PROPERTY

Target Property Map:	35080-C2 ALBEMARLE, NC
Most Recent Revision:	1996
East Map:	35080-C1 MORROW MOUNTAIN, NC
Most Recent Revision:	1994

TARGET PROPERTY SEARCH RESULTS

The target property was not listed in any of the databases searched by EDR.

DATABASES WITH NO MAPPED SITES

No mapped sites were found in EDR's search of available ("reasonably ascertainable ") government records either on the target property or within the search radius around the target property for the following databases:

FEDERAL RECORDS

NPL	National Priority List
Proposed NPL	Proposed National Priority List Sites
Delisted NPL	National Priority List Deletions
NPL LIENS	. Federal Superfund Liens
CERCLIS	Comprehensive Environmental Response, Compensation, and Liability Information System
CERC-NFRAP	CERCLIS No Further Remedial Action Planned
LIENS 2	CERCLA Lien Information

CORRACTS	Corrective Action Report
	. COnective Action Report RCRA - Transporters, Storage and Disposal
	RCRA - Large Quantity Generators
	RCRA - Small Quantity Generators
	_ RCRA - Conditionally Exempt Small Quantity Generator
RCRA-CESQG	PCRA - Conditionally Exemptional Quantity Generator
	Freinearing Centrole Sites List
	Engineering Controls Sites List
	Sites with Institutional Controls
	Emergency Response Notification System
HMIK5	Hazardous Materials Information Reporting System
DOT OPS.	. Incident and Accident Data
US CDL	Clandestine Drug Labs
US BROWNFIELDS	A Listing of Brownfields Sites
	Department of Defense Sites
	Formerly Used Defense Sites
	. Land Use Control Information System
CONSENT	Superfund (CERCLA) Consent Decrees
ROD	Records Of Decision
UMTRA	
ODI	Open Dump Inventory
DEBRIS REGION 9	Torres Martinez Reservation Illegal Dump Site Locations
MINES	
	. Toxic Chemical Release Inventory System
	Toxic Substances Control Act
FTTS	FIFRA/ TSCA Tracking System - FIFRA (Federal Insecticide, Fungicide, & Rodenticide
	Act)/TSCA (Toxic Substances Control Act) FIFRA/TSCA Tracking System Administrative Case Listing
HIST FTTS	FIFRA/TSCA Tracking System Administrative Case Listing
SSTS	Section 7 Tracking Systems
ICIS	Integrated Compliance Information System
PADS	PCB Activity Database System
	Material Licensing Tracking System
RADINFO	Radiation Information Database
FINDS	. Facility Index System/Facility Registry System
RAATS	. RCRA Administrative Action Tracking System
	5,

STATE AND LOCAL RECORDS

SHWS	. Inactive Hazardous Sites Inventory
IMD	Incident Management Database
NC HSDS	Hazardous Substance Disposal Site
SWF/LF	List of Solid Waste Facilities
OLI	. Old Landfill Inventory
HIST LF	Solid Waste Facility Listing
LUST	Regional UST Database
LUST TRUST	State Trust Fund Database
UST	Petroleum Underground Storage Tank Database
AST	AST Database
INST CONTROL	No Further Action Sites With Land Use Restrictions Monitoring
VCP	Responsible Party Voluntary Action Sites
DRYCLEANERS	Drycleaning Sites
BROWNFIELDS	Brownfields Projects Inventory
	NPDES Facility Location Listing

TRIBAL RECORDS

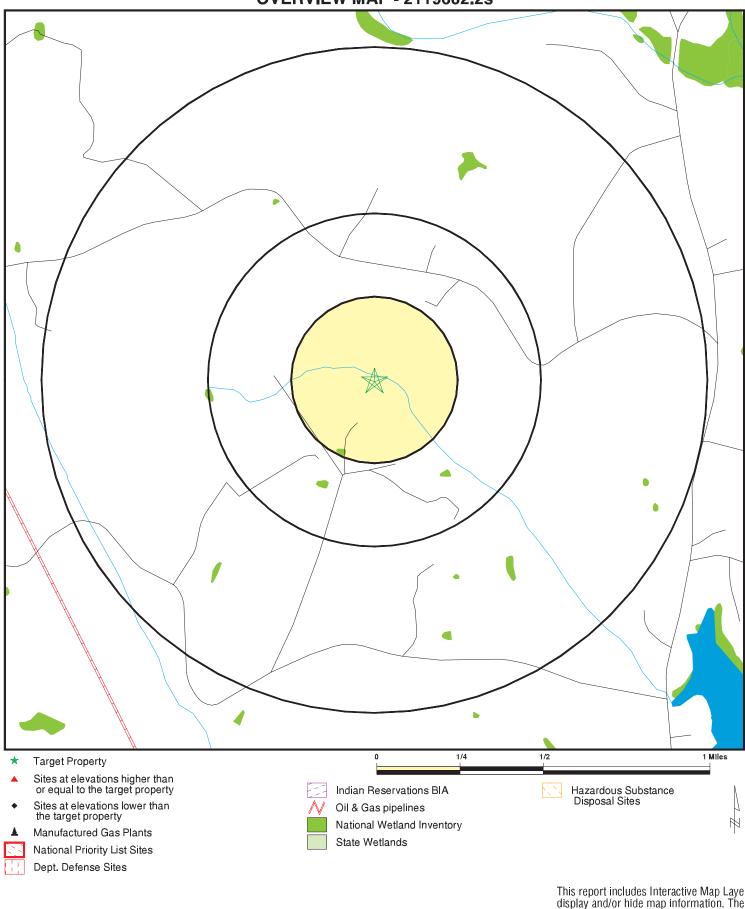
INDIAN RESERV...... Indian Reservations

INDIAN LUST Leaking Underground Storage Tanks on Indian Land INDIAN UST Underground Storage Tanks on Indian Land

EDR PROPRIETARY RECORDS

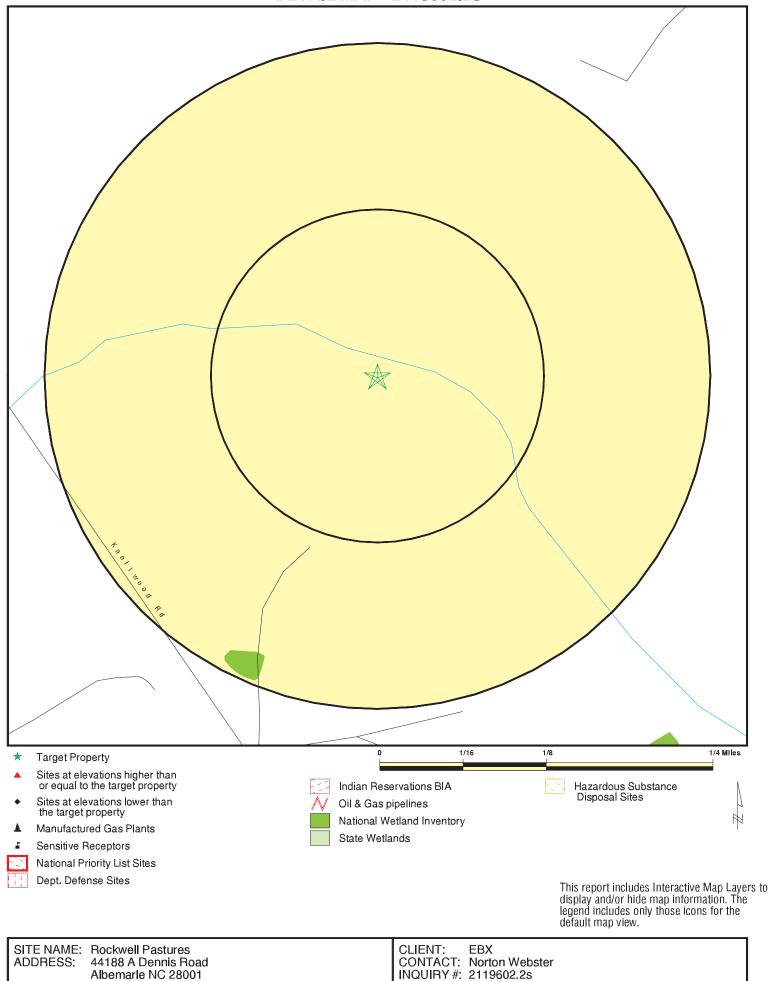
Manufactured Gas Plants ... EDR Proprietary Manufactured Gas Plants

SURROUNDING SITES: SEARCH RESULTS


Surrounding sites were not identified.

Unmappable (orphan) sites are not considered in the foregoing analysis.

Due to poor or inadequate address information, the following sites were not mapped:


Site Name	Database(s)
CAROLINA SOLITE CORP/AQUADALE	CERC-NFRAP
MIN O PON	LUST, UST, IMD
EFIRDS BACKHOE SERVICE (FORMER	LUST, IMD
HWY 205 @ 24/27	LUST
CANTON RD MINI MART	LUST, IMD
FROG POND 66	LUST, UST, IMD
MORGAN MILLS (DAWSON PLANT #6)	LUST, IMD
METAL MAINTENANCE	LUST, IMD
PHILLIPS 66 FORMER	LUST, IMD
MILTONS GROCERY/GAS FORMER	LUST, IMD
DOBY TRUST - WHITE OAK RANCH F	LUST, IMD
CANTON ROAD MINIMART #2	LUST, IMD
PHILLIPS 66-HWY 24/27	LUST, IMD
SERVCO 00115 (WILCO #381)	LUST, LUST TRUST, IMD
ALLISON MANUFACTURING COMPANY	LUST, IMD
THE STORE/HOME SAVINGS AND LOA	LUST, IMD
U FILLER UP (FORMER)	LUST
	LUST, IMD
DOBY TRUST - EGG PLANT & HATCH MILLINGPORT ELEMENTARY SCHOOL	LUST, IMD
FAST STOP #1	LUST, IMD
BURRIS ALTON PROPERTY (FORMER)	LUST, IMD LUST, IMD
HUNEYCUTT PROPERTY	LUST, IMD
MCCOY OIL COMPANY	LUST, LUST TRUST, IMD
FAST STOP #1	LUST TRUST
REID EFIRD BACKHOE SERVICE	UST
NORTH CAROLINA NATURAL GAS CO	UST
BELK 018	UST
GREEN TOP 66	UST
MIN O PON	UST
CHARLES HARRINGTON	UST
HIGHWAY 52 66 STATION	UST
WILCO 381	UST
QUIK CHECK 18	UST
CONCORD ROAD GULF	UST
ALL STAR MILLS. INC.	UST
VERN'S 66	UST
C.L. VICKERS TRANSFER	UST
TIME WARNER CABLE	UST
CONCORD TELEPHONE MICROWAVE T	UST
HALL'S MOTORCYCLE SHOP	UST
MILLINGPORT ELEMENTARY SCHOOL	UST
AEROQUIP-NORWOOD PLANT	UST
REMBERT HARGROVE BLALOCK	UST
KAISER AGRICULTURAL CHEMICAL	UST
STANLY FIXTURES CO., INC.	UST
JEFFERIES SOUTHERN PROCESSORS	AST
HAWOOD PROPERTY/STROUD IMAGES RUSSELL S AUTOMOTIVE	RCRA-NonGen
	FINDS, RCRA-CESQG
AREY/TAYLOR WELLS U FILLER UP (FORMER)	IMD IMD
CROSSROADS GROCERY	IMD
LUTHER GORDON PROPERTY	IMD
LONG CREEK WWTP	IMD

This report includes Interactive Map Layers to display and/or hide map information. The legend includes only those icons for the default map view.

SITE NAME: Rockwell Pastures	CLIENT: EBX
ADDRESS: 44188 A Dennis Road	CONTACT: Norton Webster
Albemarle NC 28001	INQUIRY #: 2119602.2s
LAT/LONG: 35.2783 / 80.1348	DATE: January 14, 2008 12:58 pm
LAT/LUNG. 33.2763760.1346	

LAT/LONG:

35.2783/80.1348

DATE:

MAP FINDINGS SUMMARY

Database	Target Property	Search Distance (Miles)	< 1/8	1/8 - 1/4	1/4 - 1/2	1/2 - 1	> 1	Total Plotted
FEDERAL RECORDS								
NPL Proposed NPL Delisted NPL NPL LIENS CERCLIS CERC-NFRAP LIENS 2 CORRACTS RCRA-TSDF RCRA-LQG RCRA-SQG RCRA-CESQG RCRA-CESQG RCRA-NonGen US ENG CONTROLS US INST CONTROL ERNS HMIRS DOT OPS CDL US BROWNFIELDS DOD FUDS LUCIS CONSENT ROD UMTRA ODI DEBRIS REGION 9 MINES TRIS TSCA FTTS HIST FTTS SSTS ICIS PADS MLTS		1.000 1.000 1.000 TP 0.500 0.500 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.500 0.500 1.000 1.000 1.000 1.000 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 TP TP TP TP TP TP TP	0 0 0 R 0 0 0 R 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 R 0 0 R 0 0 0 0 0 0 0 0 R R R R R	0 0 0 R 0 0 R R R R R 0 0 R R R R R R R	0 0 0 R R R R 0 R R R R R R R R R R R R	NR R R R R R R R R R R R R R R R R R R	
RADINFO FINDS RAATS		TP TP TP	NR NR NR	NR NR NR	NR NR NR	NR NR NR	NR NR NR	0 0 0
STATE AND LOCAL RECOR	DS							
State Haz. Waste IMD NC HSDS State Landfill OLI		1.000 0.500 1.000 0.500 0.500	0 0 0 0	0 0 0 0	0 0 0 0 0	0 NR 0 NR NR	NR NR NR NR NR	0 0 0 0 0

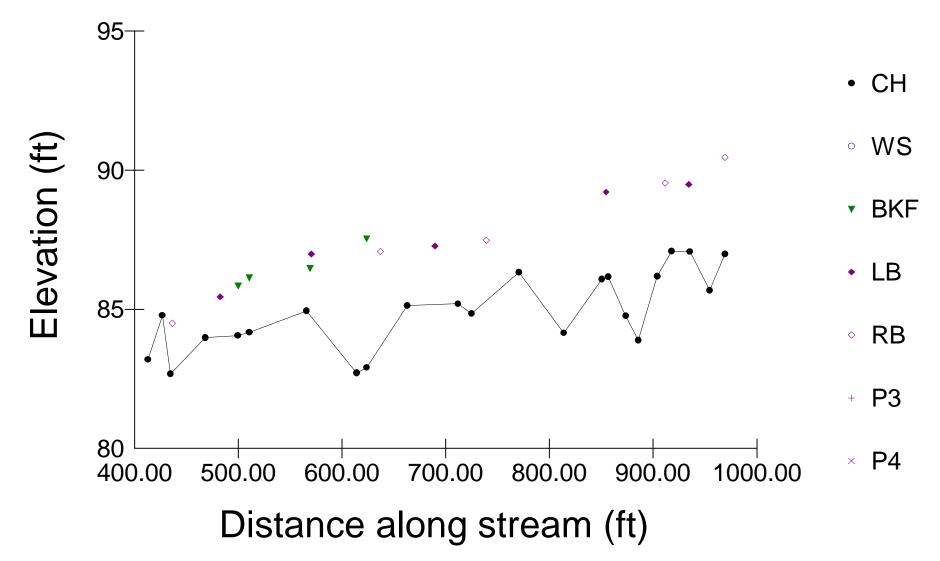
MAP FINDINGS SUMMARY

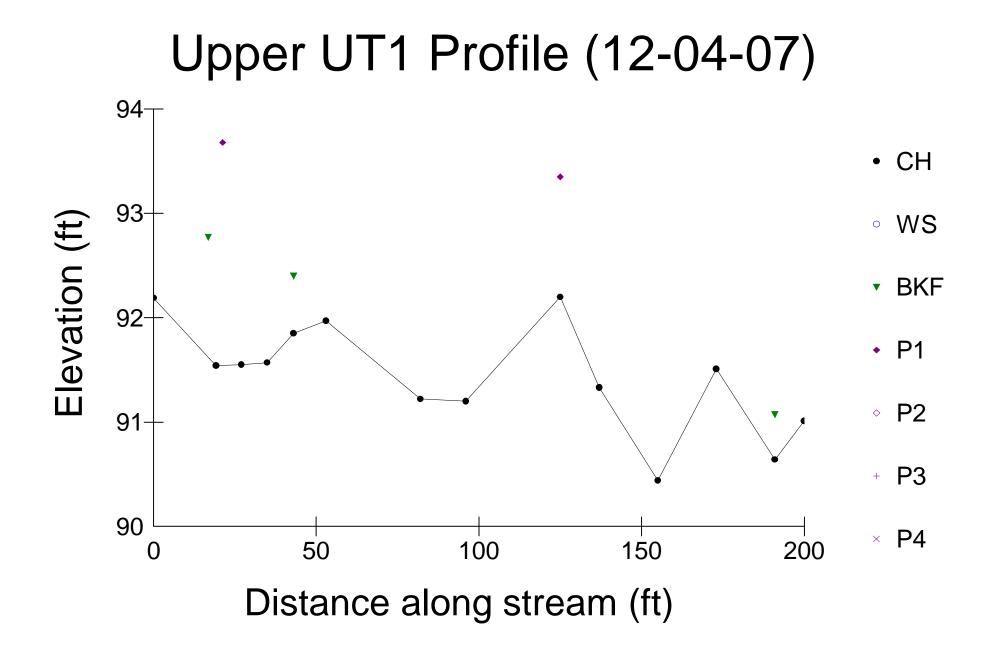
Database	Target Property	Search Distance (Miles)	< 1/8	1/8 - 1/4	1/4 - 1/2	1/2 - 1	> 1	Total Plotted
HIST LF		0.500	0	0	0	NR	NR	0
LUST		0.500	0	0	0	NR	NR	0
LUST TRUST		0.500	0	0	0	NR	NR	0
UST		0.250	0	0	NR	NR	NR	0
AST		0.250	0	0	NR	NR	NR	0
INST CONTROL		0.500	0	0	0	NR	NR	0
VCP		0.500	0	0	0	NR	NR	0
DRYCLEANERS		0.250	0	0	NR	NR	NR	0
BROWNFIELDS		0.500	0	0	0	NR	NR	0
NPDES		TP	NR	NR	NR	NR	NR	0
TRIBAL RECORDS								
INDIAN RESERV		1.000	0	0	0	0	NR	0
INDIAN LUST		0.500	0	0	0	NR	NR	0
INDIAN UST		0.250	0	0	NR	NR	NR	0
EDR PROPRIETARY RECOR	RDS							
Manufactured Gas Plants		1.000	0	0	0	0	NR	0

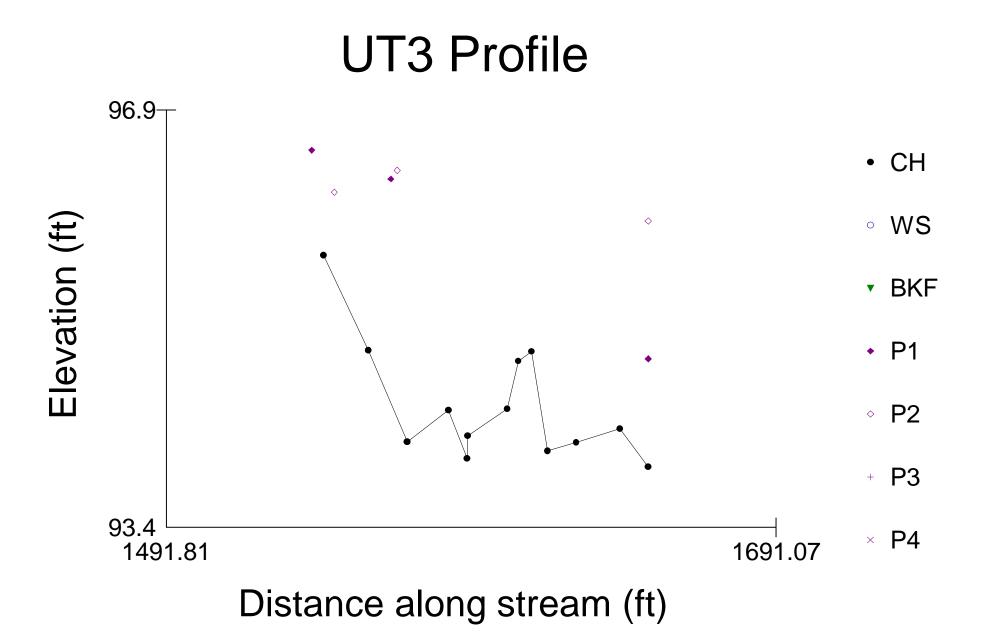
NOTES:

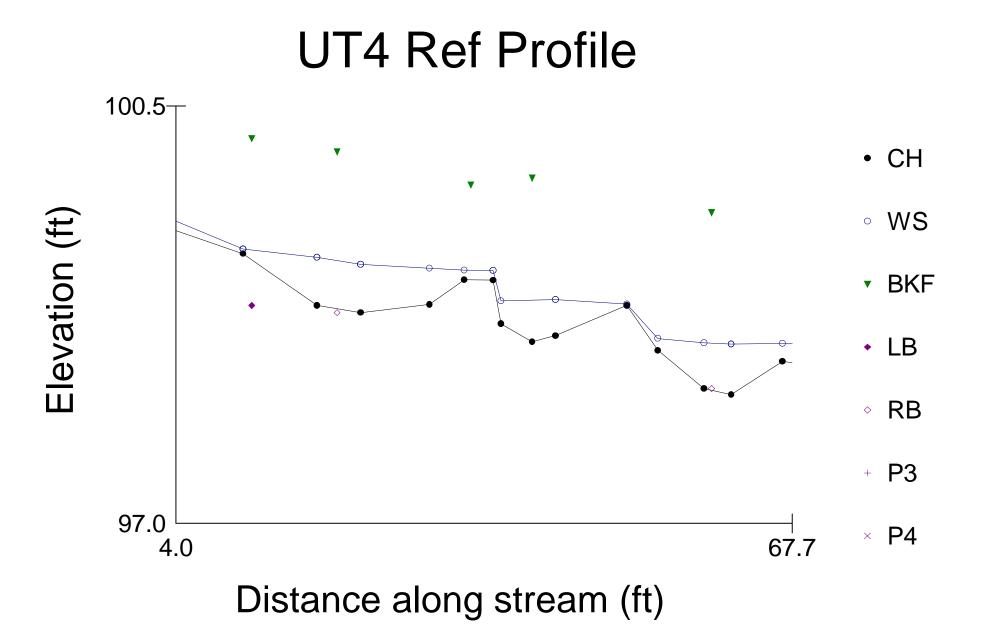
TP = Target Property

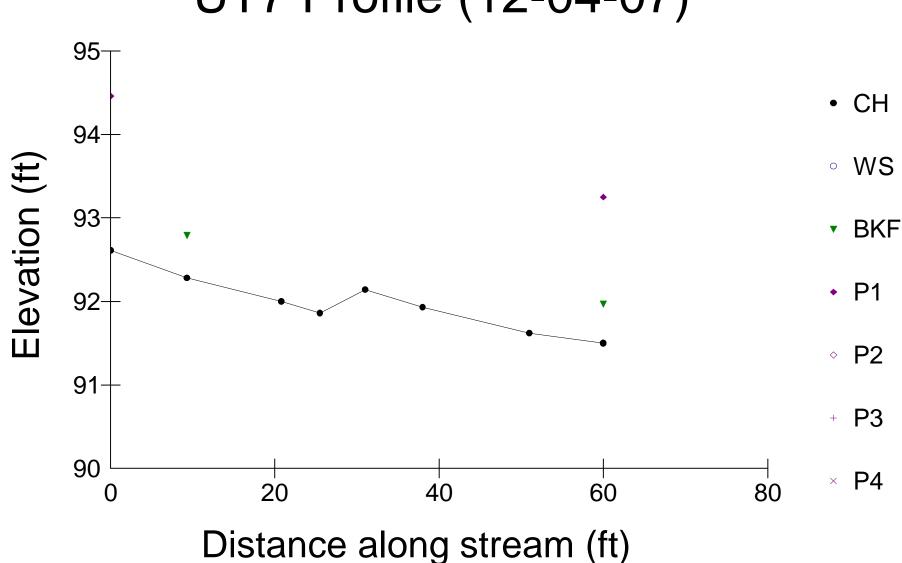
NR = Not Requested at this Search Distance

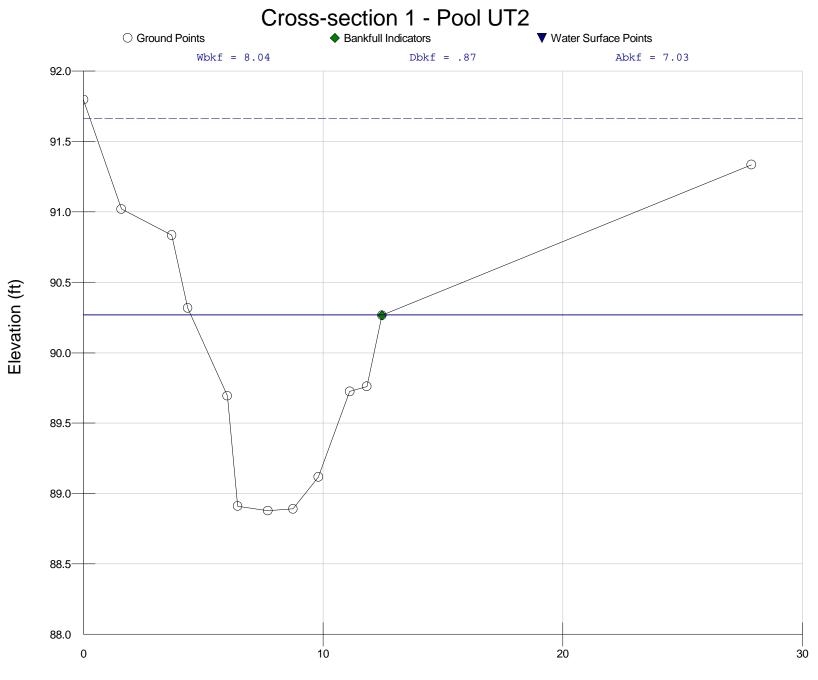

Sites may be listed in more than one database


Appendix 7


Stream Assessment




UT1 Lower Profile



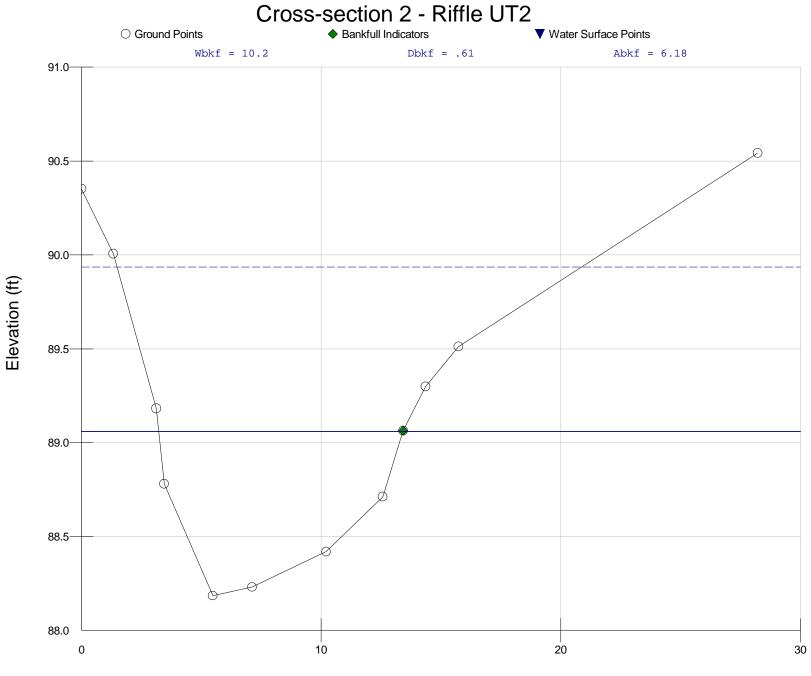
UT7 Profile (12-04-07)

Horizontal Distance (ft)

RIVERMORPH CROSS SECTION SUMMARY

River Name:RockwellReach Name:UT2Cross Section Name:Cross-section 1 - Pool UT2Survey Date:12/04/2007

Cross Section Data EntryBM Elevation:0 ftBacksight Rod Reading:0 ft


TAPE	FS	ELEV	NOTE
0	0	91.80	
1.58	0	91.02	
3.68	0	90.83	BKF
4.35	0	90.32	REW
6	0	89.69	
6.43	0	88.91	
7.69	0	88.88	
8.74	0	88.89	LEW
9.8	0	89.12	BKF
11.11	0	89.73	
11.82	0	89.76	
12.45	0	90.26534	BKF
27.87	0	91.33572	

Cross Sectional Geometry

	Channel	Left	Right
Floodprone Elevation (ft)	91.66	91.66	91.66
Bankfull Elevation (ft)	90.27	90.27	90.27
Floodprone Width (ft)	27.59		
Bankfull Width (ft)	8.04	4.02	4.02
Entrenchment Ratio	3.43		
Mean Depth (ft)	0.87	0.92	0.83
Maximum Depth (ft)	1.39	1.39	1.38
Width/Depth Ratio	9.24	4.37	4.84
Bankfull Area (sq ft)	7.03	3.71	3.32
Wetted Perimeter (ft)	8.95	5.97	5.74
Hydraulic Radius (ft)	0.79	0.62	0.58
Begin BKF Station	4.48	4.48	8.5
End BKF Station	12.52	8.5	12.52

	Channel	Left Side	Right Side
Slope	0	0	0
Shear Stress (lb/sq ft)			
Movable Particle (mm)			

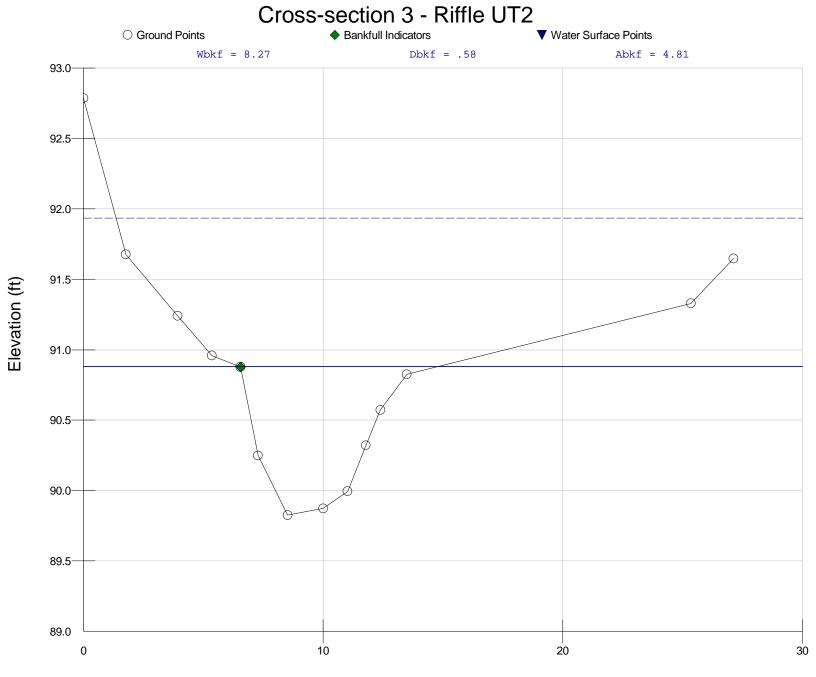
Entrainment Calculations (Rosgen Modified Shields Curve)

Horizontal Distance (ft)

RIVERMORPH CROSS SECTION SUMMARY

River Name:RockwellReach Name:UT2Cross Section Name:Cross-section 2 - Riffle UT2Survey Date:12/04/2007

Cross Section Data EntryBM Elevation:0 ftBacksight Rod Reading:0 ft


TAPE	FS	ELEV	NOTE
0	0	90.35	
1.33	0	90.01	
3.12	0	89.18	BKF
3.45	0	88.78	REW
5.48	0	88.19	
7.12	0	88.23	
10.21	0	88.42	
12.57	0	88.71	LEW
13.42	0	89.06	BKF
14.35	0	89.30	
15.73	0	89.51	
28.21	0	90.54206	

Cross Sectional Geometry

	Channel	Left	Right
Floodprone Elevation (ft)	89.93	89.93	89.93
Bankfull Elevation (ft)	89.06	89.06	89.06
Floodprone Width (ft)	19.37		
Bankfull Width (ft)	10.19	5.2	4.99
Entrenchment Ratio	1.9		
Mean Depth (ft)	0.61	0.7	0.51
Maximum Depth (ft)	0.87	0.87	0.75
Width/Depth Ratio	16.7	7.43	9.78
Bankfull Area (sq ft)	6.18	3.63	2.56
Wetted Perimeter (ft)	10.5	6.17	5.83
Hydraulic Radius (ft)	0.59	0.59	0.44
Begin BKF Station	3.22	3.22	8.42
End BKF Station	13.41	8.42	13.41

	Channel	Left Side	Right Side
Slope	0	0	0
Shear Stress (lb/sq ft)			
Movable Particle (mm)			

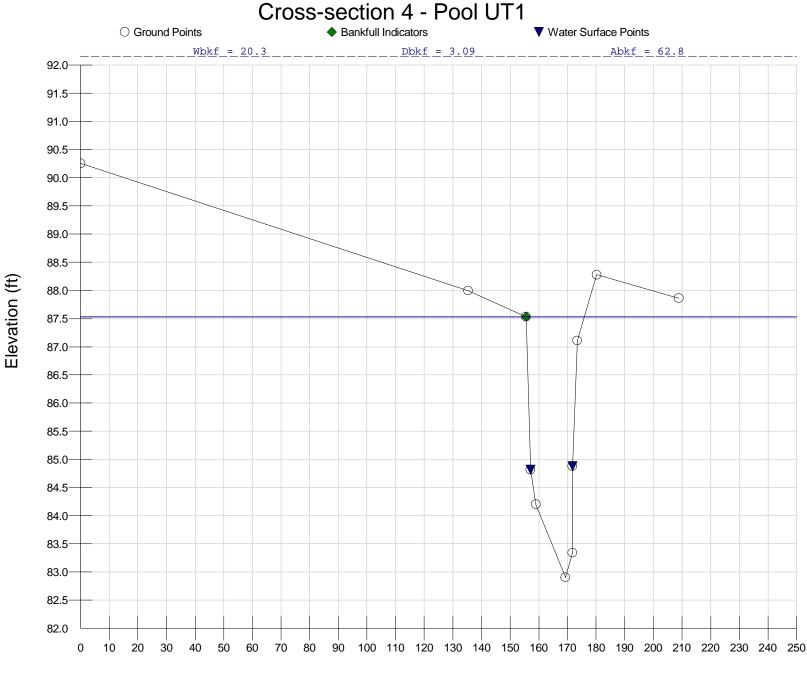
Entrainment Calculations (Rosgen Modified Shields Curve)

Horizontal Distance (ft)

RIVERMORPH CROSS SECTION SUMMARY

River Name:RockwellReach Name:UT2Cross Section Name:Cross-section 3 - Riffle UT2Survey Date:12/04/2007

Cross Section Data EntryBM Elevation:0 ftBacksight Rod Reading:0 ft


TAPE	FS	ELEV	NOTE
0	0	92.79	
1.77	0	91.68	
3.93	0	91.24	BKF
5.36	0	90.96	REW
6.55	0	90.88	BKF
7.28	0	90.25	
8.52	0	89.83	
10	0	89.87	LEW
11.02	0	90.00	BKF
11.78	0	90.32	
12.39	0	90.57	
13.49	0	90.82	BKF
25.34	0	91.33	
27.12	0	91.65	

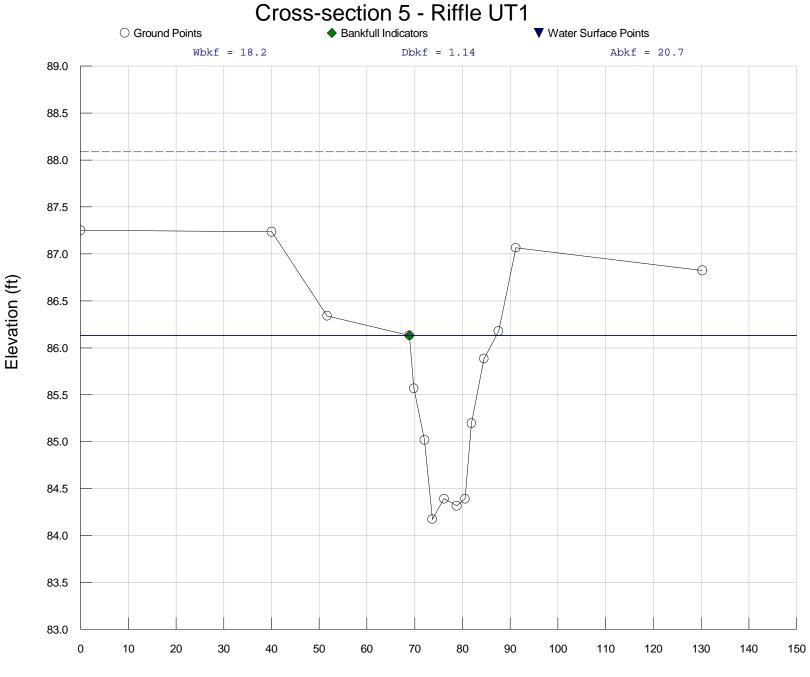
Cross Sectional Geometry

	Channel	Left	Right
Floodprone Elevation (ft)	91.93	91.93	91.93
Bankfull Elevation (ft)	90.88	90.88	90.88
Floodprone Width (ft)	25.76		
Bankfull Width (ft)	8.27	4.13	4.14
Entrenchment Ratio	3.12		
Mean Depth (ft)	0.58	0.83	0.33
Maximum Depth (ft)	1.05	1.05	0.93
Width/Depth Ratio	14.26	4.98	12.55
Bankfull Area (sq ft)	4.81	3.43	1.38
Wetted Perimeter (ft)	8.73	5.37	5.22
Hydraulic Radius (ft)	0.55	0.64	0.27
Begin BKF Station	6.52	6.52	10.65
End BKF Station	14.79	10.65	14.79

Entrainment Calculations (Shields Curve)

	Channel	Left Side	Right Side
Slope	0.0299	0	0
Shear Stress (lb/sq ft)	1.03		
Movable Particle (mm)	90.6		

River Name:RockwellReach Name:UT1 LowerCross Section Name:Cross-section 4 - Pool UT1Survey Date:12/21/2007


Cross Section Data EntryBM Elevation:0 ftBacksight Rod Reading:0 ft

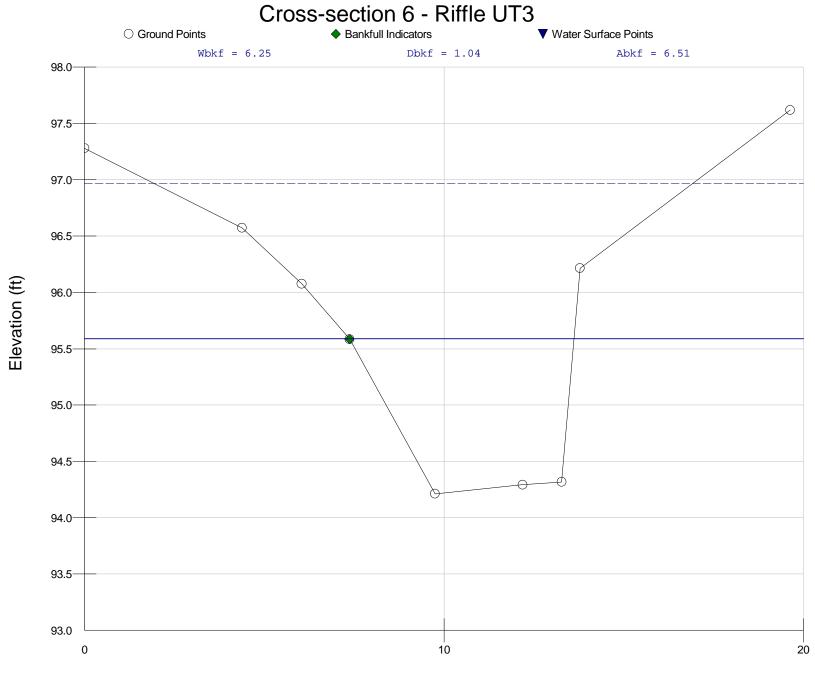
TAPE	FS	ELEV	NOTE
0	0	90.25	
135.32	0	88.00	
155.55	0	87.53	BKF
157.11	0	84.82	REW
158.98	0	84.20	
169.31	0	82.91	
171.76	0	83.34	
171.77	0	84.88	LEW
173.46	0	87.11	
180.2	0	88.28	
208.87	0	87.86	

	Channel	Left	Right
Floodprone Elevation (ft)	92.15	92.15	92.15
Bankfull Elevation (ft)	87.53	87.53	87.53
Floodprone Width (ft)	208.87		
Bankfull Width (ft)	20.33	10.17	10.16
Entrenchment Ratio	10.27		
Mean Depth (ft)	3.09	3.25	2.93
Maximum Depth (ft)	4.62	4.17	4.62
Width/Depth Ratio	6.58	3.13	3.47
Bankfull Area (sq ft)	62.77	33.04	29.72
Wetted Perimeter (ft)	24.79	16.06	17.07
Hydraulic Radius (ft)	2.53	2.06	1.74
Begin BKF Station	155.55	155.55	165.72
End BKF Station	175.88	165.72	175.88

Entramment Calculations (Rosgen Woulded Smelds Culve)			
	Channel	Left Side	Right Side
Slope	0	0	0
Shear Stress (lb/sq ft)			
Movable Particle (mm)			

Entrainment Calculations (Rosgen Modified Shields Curve)

River Name:RockwellReach Name:UT1 LowerCross Section Name:Cross-section 5 - Riffle UT1Survey Date:12/21/2007


Cross Section Data EntryBM Elevation:0 ftBacksight Rod Reading:0 ft

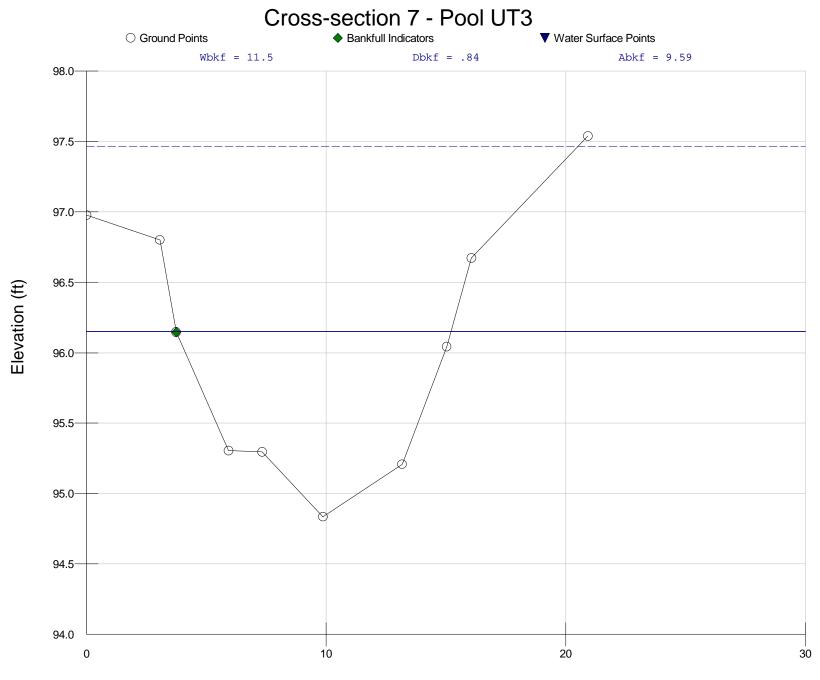
TAPE	FS	ELEV	NOTE
0	0	87.25	
40.05	0	87.24	
51.66	0	86.34	TOB L
68.9	0	86.13	BKF
69.83	0	85.57	L BKF
72.05	0	85.02	
73.67	0	84.17	TW
76.15	0	84.39	
78.8	0	84.32	BKF R
80.55	0	84.39	
81.9	0	85.20	
84.51	0	85.88	TOB R
87.57	0	86.18	
91.2	0	87.07	
130.24	0	86.82	

	Channel	Left	Right
Floodprone Elevation (ft)	88.09	88.09	88.09
Bankfull Elevation (ft)	86.13	86.13	86.13
Floodprone Width (ft)	130.24		
Bankfull Width (ft)	18.19	9.1	9.09
Entrenchment Ratio	7.16		
Mean Depth (ft)	1.14	1.37	0.9
Maximum Depth (ft)	1.96	1.96	1.81
Width/Depth Ratio	15.96	6.64	10.1
Bankfull Area (sq ft)	20.67	12.45	8.21
Wetted Perimeter (ft)	18.95	11.33	11.2
Hydraulic Radius (ft)	1.09	1.1	0.73
Begin BKF Station	68.9	68.9	78
End BKF Station	87.09	78	87.09

Entrainment Curculations	(Difference)	41 107	
	Channel	Left Side	Right Side
Slope	0.009	0	0
Shear Stress (lb/sq ft)	0.61		
Movable Particle (mm)	36.8		

Entrainment Calculations (Shields Curve)

River Name:RockwellReach Name:UT3Cross Section Name:Cross-section 6 - Riffle UT3Survey Date:12/21/2007


Cross Section Data EntryBM Elevation:0 ftBacksight Rod Reading:0 ft

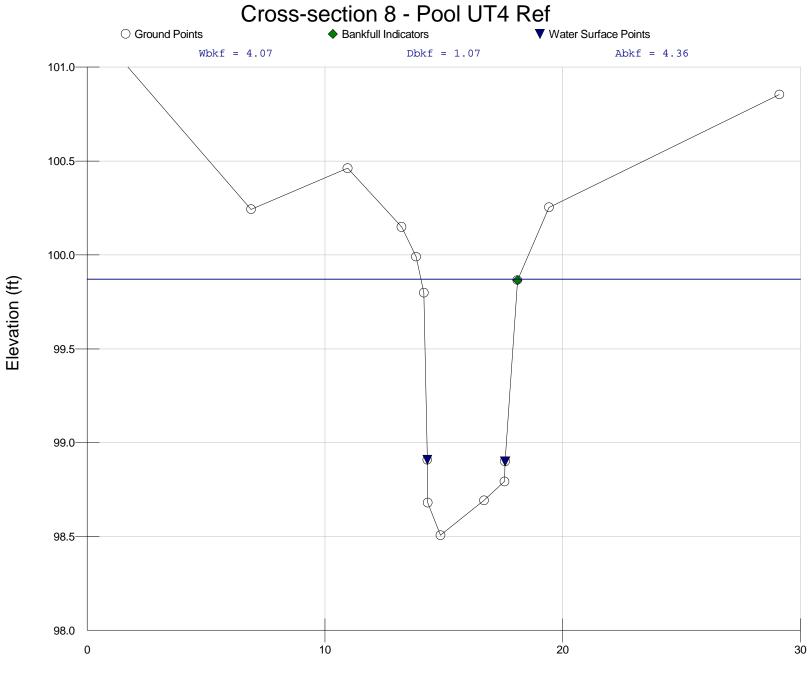
TAPE	FS	ELEV	NOTE
0	0	97.28	
4.38	0	96.57	
6.04	0	96.08	
7.37	0	95.59	BKF
9.75	0	94.21	
12.19	0	94.29	
13.27	0	94.32	
13.78	0	96.21	
19.63	0	97.62	
20.92	0	97.54	

	Channel	Left	Right
Floodprone Elevation (ft)	96.97	96.97	96.97
Bankfull Elevation (ft)	95.59	95.59	95.59
Floodprone Width (ft)	14.99		
Bankfull Width (ft)	6.25	3.12	3.13
Entrenchment Ratio	2.4		
Mean Depth (ft)	1.04	0.85	1.24
Maximum Depth (ft)	1.38	1.38	1.35
Width/Depth Ratio	6.01	3.67	2.52
Bankfull Area (sq ft)	6.51	2.64	3.87
Wetted Perimeter (ft)	7.6	4.85	5.46
Hydraulic Radius (ft)	0.86	0.55	0.71
Begin BKF Station	7.36	7.36	10.48
End BKF Station	13.61	10.48	13.61

Entramment Calculations (Sin	Channel	Left Side	Right Side
Slope	0.0126	0	0
Shear Stress (lb/sq ft)	0.68		
Movable Particle (mm)	41.3		

Entrainment Calculations (Shields Curve)

River Name:RockwellReach Name:UT3Cross Section Name:Cross-section 7 - Pool UT3Survey Date:12/21/2007


Cross Section Data EntryBM Elevation:0 ftBacksight Rod Reading:0 ft

TAPE	FS	ELEV	NOTE
0	0	96.98	
3.06	0	96.80	
3.74	0	96.15	BKF
5.93	0	95.30	
7.33	0	95.30	
9.87	0	94.84	
13.17	0	95.21	
15.03	0	96.04	
16.06	0	96.67	
20.92	0	97.54	

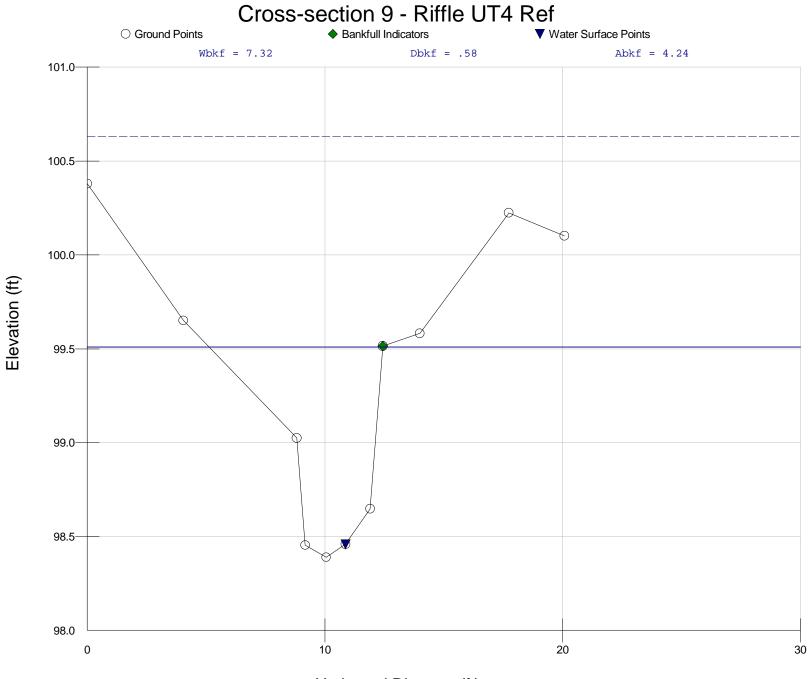
	Channel	Left	Right
Floodprone Elevation (ft)	97.46	97.46	97.46
Bankfull Elevation (ft)	96.15	96.15	96.15
Floodprone Width (ft)	20.51		
Bankfull Width (ft)	11.47	6.26	5.21
Entrenchment Ratio	1.79		
Mean Depth (ft)	0.84	0.81	0.87
Maximum Depth (ft)	1.31	1.31	1.3
Width/Depth Ratio	13.65	7.73	5.99
Bankfull Area (sq ft)	9.59	5.05	4.54
Wetted Perimeter (ft)	11.9	7.76	6.74
Hydraulic Radius (ft)	0.81	0.65	0.67
Begin BKF Station	3.74	3.74	10
End BKF Station	15.21	10	15.21

Entramment Calculations (1005gen Woldmed Smelds Calver)				
	Channel	Left Side	Right Side	
Slope	0	0	0	
Shear Stress (lb/sq ft)				
Movable Particle (mm)				

Entrainment Calculations (Rosgen Modified Shields Curve)

River Name:RockwellReach Name:UT4 UpperCross Section Name:Cross-section 8 - Pool UT4 RefSurvey Date:12/05/2007

Cross Section Data EntryBM Elevation:0 ftBacksight Rod Reading:0 ft


TAPE	FS	ELEV	NOTE
0	0	101.25	
6.89	0	100.24	
10.95	0	100.46	
13.22	0	100.15	
13.83	0	99.99	
14.16	0	99.80	
14.3	0	98.91	LEW
14.32	0	98.68	
14.86	0	98.51	
16.69	0	98.69	
17.55	0	98.79	
17.57	0	98.90	REW
18.09	0	99.87	BKF
19.42	0	100.25	
29.11	0	100.85	

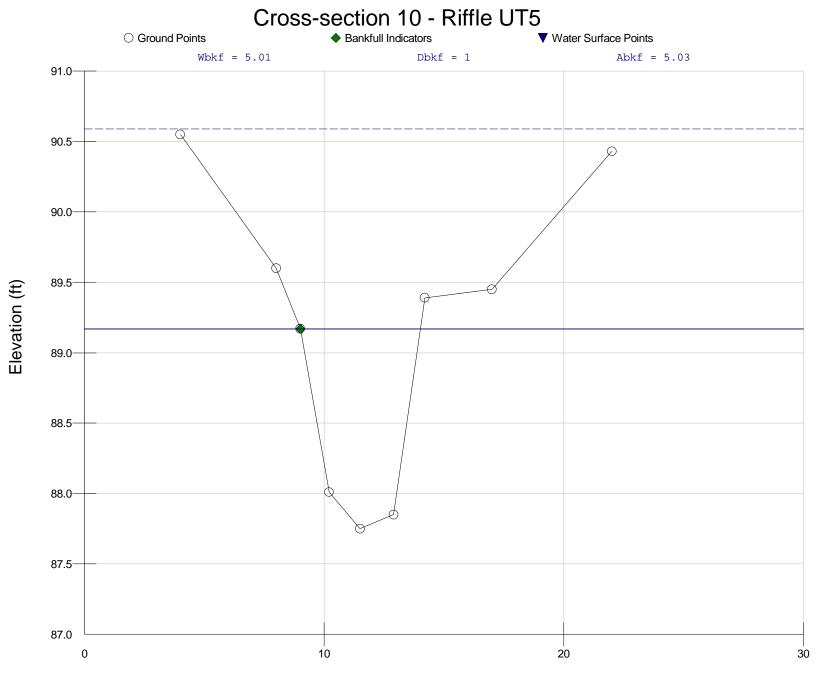
Cross Sectional Geometry

	Channel	Left	Right
Floodprone Elevation (ft)	101.23	101.23	101.23
Bankfull Elevation (ft)	99.87	99.87	99.87
Floodprone Width (ft)	29		
Bankfull Width (ft)	4.07	2.03	2.04
Entrenchment Ratio	7.13		
Mean Depth (ft)	1.07	1.16	0.98
Maximum Depth (ft)	1.36	1.36	1.24
Width/Depth Ratio	3.8	1.75	2.08
Bankfull Area (sq ft)	4.36	2.36	1.99
Wetted Perimeter (ft)	5.77	4.3	3.95
Hydraulic Radius (ft)	0.76	0.55	0.5
Begin BKF Station	14.04	14.04	16.07
End BKF Station	18.11	16.07	18.11

Entrainment Calculations (Rosgen Modified Shields Curve)

	Channel	Left Side	Right Side
Slope	0	0	0
Shear Stress (lb/sq ft)			
Movable Particle (mm)			

River Name:RockwellReach Name:UT4 UpperCross Section Name:Cross-section 9 - Riffle UT4 RefSurvey Date:12/05/2007


Cross Section Data EntryBM Elevation:0 ftBacksight Rod Reading:0 ft

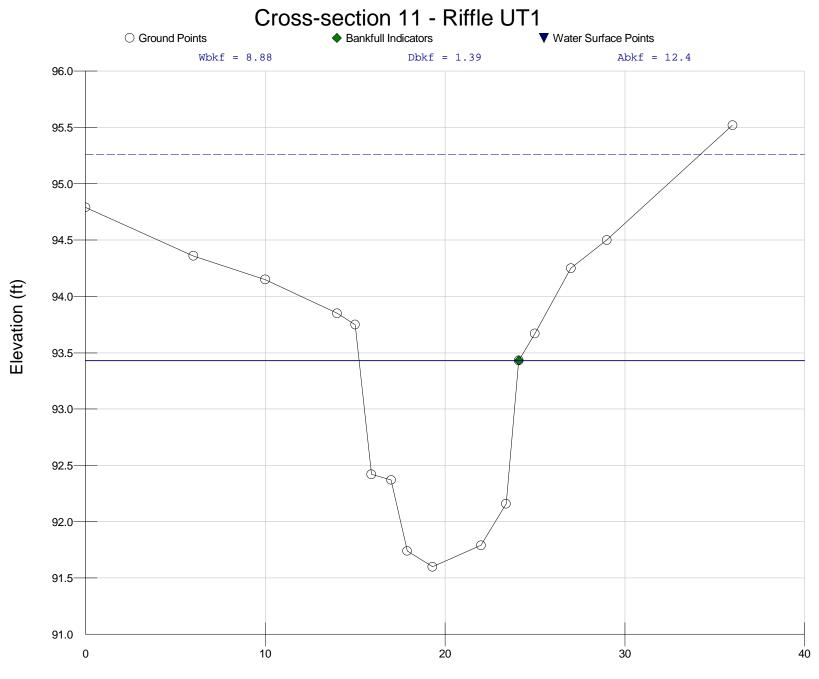
TAPE	FS	ELEV	NOTE
0	0	100.38	
4.04	0	99.65	
8.81	0	99.02	
9.16	0	98.45	
10.05	0	98.39	
10.86	0	98.46	LEW
11.9	0	98.65	
12.43	0	99.51	BKF
13.99	0	99.58	
17.73	0	100.22	
20.07	0	100.10	

	Channel	Left	Right
Floodprone Elevation (ft)	100.63	100.63	100.63
Bankfull Elevation (ft)	99.51	99.51	99.51
Floodprone Width (ft)	20.07		
Bankfull Width (ft)	7.32	3.66	3.66
Entrenchment Ratio	2.74		
Mean Depth (ft)	0.58	0.24	0.92
Maximum Depth (ft)	1.12	0.48	1.12
Width/Depth Ratio	12.62	15.25	3.98
Bankfull Area (sq ft)	4.24	0.88	3.36
Wetted Perimeter (ft)	8.18	4.17	4.96
Hydraulic Radius (ft)	0.52	0.21	0.68
Begin BKF Station	5.11	5.11	8.77
End BKF Station	12.43	8.77	12.43

Entrainment Calculations (Shields Culve)					
	Channel	Left Side	Right Side		
Slope	0.0185	0	0		
Shear Stress (lb/sq ft)	0.60				
Movable Particle (mm)	35.9				

Entrainment Calculations (Shields Curve)

River Name:RockwellReach Name:UT5Cross Section Name:Cross-section 10 - Riffle (2007-12-05)Survey Date:12/05/2007


Cross Section Data EntryBM Elevation:100 ftBacksight Rod Reading:0 ft

TAPE	FS	ELEV	NOTE
4	0	90.55	
8	0	89.60	
9	0	89.17	BKF
10.2	0	88.01	
11.5	0	87.75	
12.9	0	87.85	
14.2	0	89.39	
17	0	89.45	
22	0	90.43	

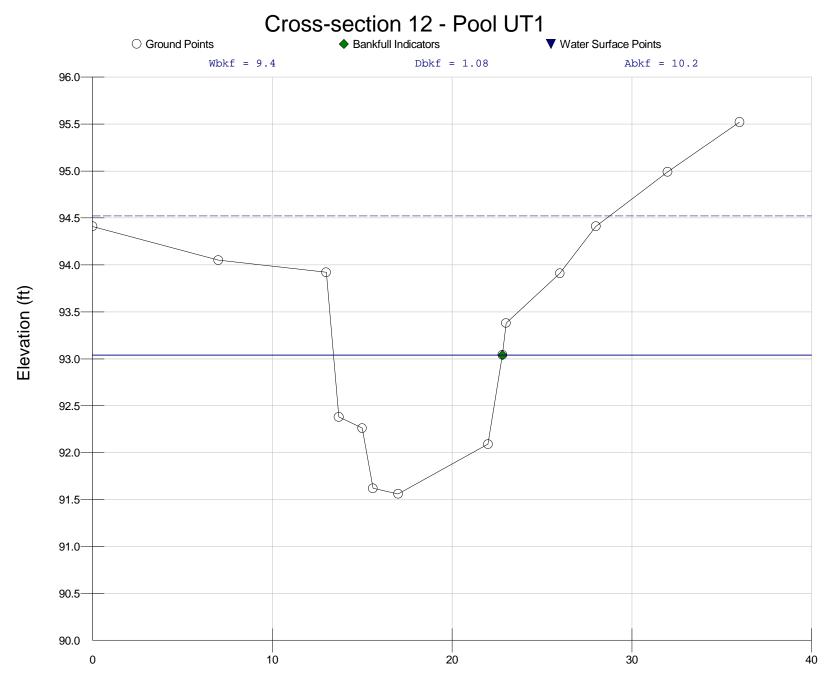
	Channel	Left	Right
Floodprone Elevation (ft)	90.59	90.59	90.59
Bankfull Elevation (ft)	89.17	89.17	89.17
Floodprone Width (ft)	18		
Bankfull Width (ft)	5.01	2.51	2.5
Entrenchment Ratio	3.59		
Mean Depth (ft)	1	0.95	1.06
Maximum Depth (ft)	1.42	1.42	1.42
Width/Depth Ratio	5.01	2.64	2.36
Bankfull Area (sq ft)	5.03	2.39	2.64
Wetted Perimeter (ft)	6.13	4.42	4.54
Hydraulic Radius (ft)	0.82	0.54	0.58
Begin BKF Station	9	9	11.51
End BKF Station	14.01	11.51	14.01

	Channel	Left Side	Right Side
Slope	0.0186	0	0
Shear Stress (lb/sq ft)	0.95		
Movable Particle (mm)	76.2		

Entrainment Calculations (Shields Curve)

River Name:RockwellReach Name:UT1 MiddleCross Section Name:Cross-section 11 - Riffle (12-04-07)Survey Date:12/06/2007

Cross Section Data EntryBM Elevation:0 ftBacksight Rod Reading:0 ft


TAPE	FS	ELEV	NOTE
0	0	94.79	
6	0	94.36	
10	0	94.15	
14	0	93.85	TOB L
15	0	93.75	
15.9	0	92.42	L BKF
17	0	92.37	
17.9	0	91.74	
19.3	0	91.6	TW
22	0	91.79	
23.4	0	92.16	
24.1	0	93.43	BKF R
25	0	93.67	
27	0	94.25	
29	0	94.5	TOB R
36	0	95.52	

Cross Sectional Geometry

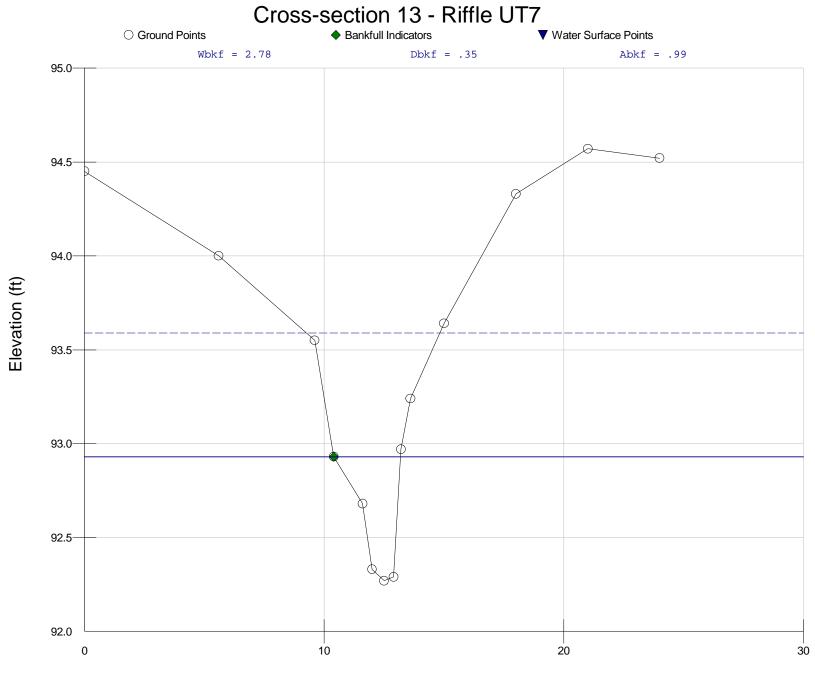
	Channel	Left	Right
Floodprone Elevation (ft)	95.26	95.26	95.26
Bankfull Elevation (ft)	93.43	93.43	93.43
Floodprone Width (ft)	34.22		
Bankfull Width (ft)	8.88	4.5	4.38
Entrenchment Ratio	3.85		
Mean Depth (ft)	1.39	1.32	1.46
Maximum Depth (ft)	1.83	1.83	1.8
Width/Depth Ratio	6.39	3.41	3
Bankfull Area (ft ²)	12.35	5.95	6.4
Wetted Perimeter (ft)	10.43	7.05	6.98
Hydraulic Radius (ft)	1.18	0.84	0.92
Begin BKF Station	15.22	15.22	19.72
End BKF Station	24.1	19.72	24.1

Entrainment Calculations (Shields Curve)

	Channel	Left Side	Right Side
Slope	0.0086	0	0
Shear Stress (lb/sq ft)	0.63		
Movable Particle (mm)	38.3		

River Name:RockwellReach Name:UT1 Middle Cross Section Name: Cross-section 12 - Pool (12-04-07) Survey Date: 12/06/2007

Cross Section Data Entry


BM Elevation: 0 ft Backsight Rod Reading: 0 ft

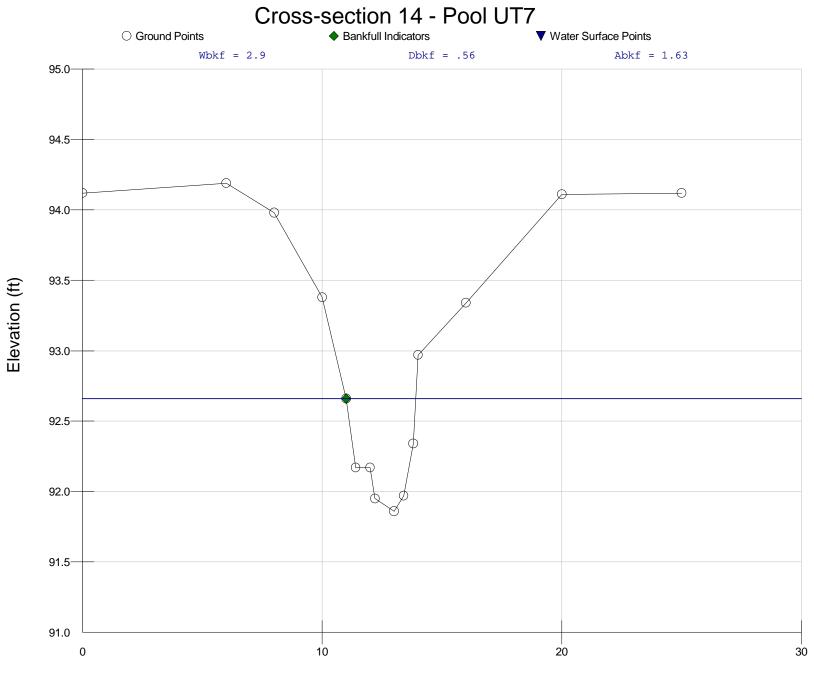
TAPE	FS	ELEV	NOTE
0	0	94.41	
7	0	94.05	
13	0	93.92	TOB L
13.7	0	92.38	
15	0	92.26	L BKF
15.6	0	91.62	
17	0	91.56	TW
22	0	92.09	
22.8	0	93.04	BKF R
23	0	93.38	
26	0	93.91	
28	0	94.41	TOB R
32	0	94.99	
36	0	95.52	

	Channel	Left	Right
Floodprone Elevation (ft)	94.52	94.52	94.52
Bankfull Elevation (ft)	93.04	93.04	93.04
Floodprone Width (ft)	28.76		
Bankfull Width (ft)	9.4	4.62	4.78
Entrenchment Ratio	3.06		
Mean Depth (ft)	1.08	1.12	1.05
Maximum Depth (ft)	1.48	1.48	1.37
Width/Depth Ratio	8.7	4.13	4.55
Bankfull Area (sq ft)	10.18	5.18	5
Wetted Perimeter (ft)	10.58	6.71	6.62
Hydraulic Radius (ft)	0.96	0.77	0.76
Begin BKF Station	13.4	13.4	18.02
End BKF Station	22.8	18.02	22.8

	Channel	Left Side	Right Side
Slope	0	0	0
Shear Stress (lb/sq ft)			
Movable Particle (mm)			

Entrainment Calculations (Rosgen Modified Shields Curve)

River Name:RockwellReach Name:UT7Cross Section Name:Cross-section 13 - Riffle (12-04-07)Survey Date:12/04/2007


Cross Section Data EntryBM Elevation:0 ftBacksight Rod Reading:0 ft

TAPE	FS	ELEV	NOTE
0	0	94.45	
5.6	0	94.00	
9.6	0	93.55	
10.4	0	92.93	BKF
11.6	0	92.68	
12	0	92.33	
12.5	0	92.27	
12.9	0	92.29	
13.2	0	92.97	
13.6	0	93.24	BNKPN
15	0	93.64	
18	0	94.33	
21	0	94.57	
24	0	94.52	

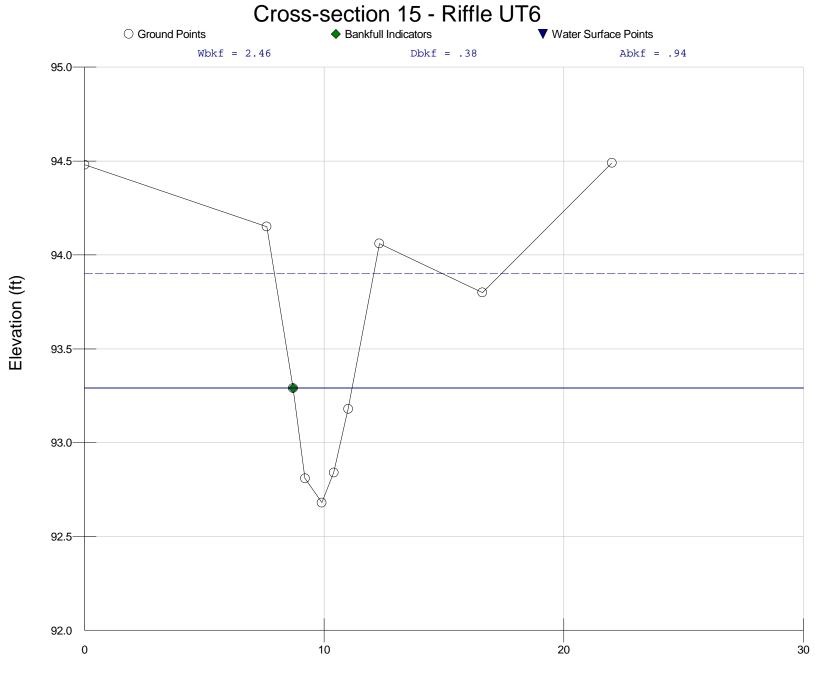
	Channel	Left	Right
Floodprone Elevation (ft)	93.59	93.59	93.59
Bankfull Elevation (ft)	92.93	92.93	92.93
Floodprone Width (ft)	5.58		
Bankfull Width (ft)	2.78	1.38	1.4
Entrenchment Ratio	2.01		
Mean Depth (ft)	0.35	0.15	0.55
Maximum Depth (ft)	0.66	0.41	0.66
Width/Depth Ratio	7.94	9.2	2.55
Bankfull Area (sq ft)	0.99	0.21	0.78
Wetted Perimeter (ft)	3.36	1.87	2.3
Hydraulic Radius (ft)	0.29	0.11	0.34
Begin BKF Station	10.4	10.4	11.78
End BKF Station	13.18	11.78	13.18

Entrainment Calculations (Smelds Curve)				
	Channel	Left Side	Right Side	
Slope	0.0184	0	0	
Shear Stress (lb/sq ft)	0.33			
Movable Particle (mm)	17.7			

Entrainment Calculations (Shields Curve)

Horizontal Distance (ft)

River Name:RockwellReach Name:UT7Cross Section Name:Cross-section 14 - Pool (12-04-07)Survey Date:12/04/2007


Cross Section Data EntryBM Elevation:0 ftBacksight Rod Reading:0 ft

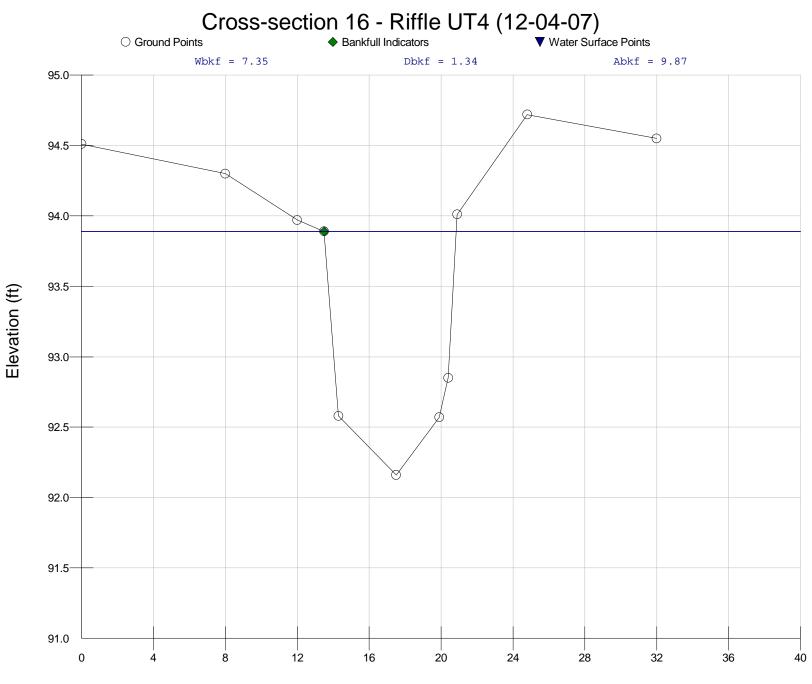
TAPE	FS	ELEV	NOTE
0	0	94.12	
6	0	94.19	
8	0	93.98	
10	0	93.38	
11	0	92.66	BKF
11.4	0	92.17	BNKPN
12	0	92.17	
12.2	0	91.95	
13	0	91.86	
13.4	0	91.97	
13.8	0	92.34	BNKPN
14	0	92.97	
16	0	93.34	
20	0	94.11	
25	0	94.12	

	Channel	Left	Right
Floodprone Elevation (ft)	93.46	93.46	93.46
Bankfull Elevation (ft)	92.66	92.66	92.66
Floodprone Width (ft)	6.89		
Bankfull Width (ft)	2.9	1.52	1.38
Entrenchment Ratio	2.37		
Mean Depth (ft)	0.56	0.49	0.64
Maximum Depth (ft)	0.8	0.75	0.8
Width/Depth Ratio	5.18	3.1	2.16
Bankfull Area (sq ft)	1.63	0.74	0.89
Wetted Perimeter (ft)	3.63	2.6	2.52
Hydraulic Radius (ft)	0.45	0.29	0.35
Begin BKF Station	11	11	12.52
End BKF Station	13.9	12.52	13.9

Entramment Calculations (Rosgen Woodmed Smelds Culve)			
	Channel	Left Side	Right Side
Slope	0	0	0
Shear Stress (lb/sq ft)			
Movable Particle (mm)			

Entrainment Calculations (Rosgen Modified Shields Curve)

River Name:RockwellReach Name:UT6Cross Section Name:Cross-section 15 - Riffle (12-04-07)Survey Date:12/06/2007


Cross Section Data EntryBM Elevation:0 ftBacksight Rod Reading:0 ft

TAPE	FS	ELEV	NOTE
0	0	94.48	
7.6	0	94.15	
8.7	0	93.29	BKF
9.2	0	92.81	
9.9	0	92.68	TW
10.4	0	92.84	
11	0	93.18	BNKPN
12.3	0	94.06	
16.6	0	93.80	
22	0	94.49	

	Channel	Left	Right
Floodprone Elevation (ft)	93.9	93.9	93.9
Bankfull Elevation (ft)	93.29	93.29	93.29
Floodprone Width (ft)	6.58		
Bankfull Width (ft)	2.46	1.22	1.24
Entrenchment Ratio	2.67		
Mean Depth (ft)	0.38	0.42	0.35
Maximum Depth (ft)	0.61	0.61	0.6
Width/Depth Ratio	6.47	2.9	3.54
Bankfull Area (sq ft)	0.94	0.51	0.43
Wetted Perimeter (ft)	2.82	2.03	1.99
Hydraulic Radius (ft)	0.34	0.25	0.22
Begin BKF Station	8.7	8.7	9.92
End BKF Station	11.16	9.92	11.16

	Channel	Left Side	Right Side
Slope	0.0162	0.0162	0.0162
Shear Stress (lb/sq ft)	0.34	0.25	0.22
Movable Particle (mm)	18.2	14	12.6

Entrainment Calculations (Shields Curve)

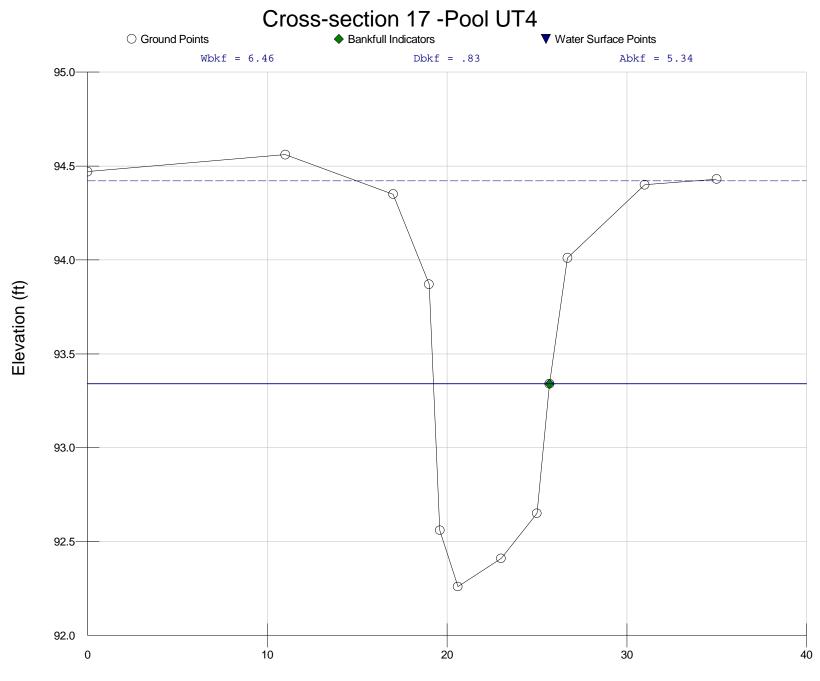
Horizontal Distance (ft)

RIVERMORPH CROSS SECTION SUMMARY

River Name:RockwellReach Name:UT4 LowerCross Section Name:Cross-section 16 - Riffle UT4 (12-04-07)Survey Date:12/04/2007

Cross Section Data EntryBM Elevation:0 ftBacksight Rod Reading:0 ft

TAPE	FS	ELEV	NOTE
0	0	94.51	
8	0	94.30	
12	0	93.97	TOB L
13.5	0	93.89	BKF
14.3	0	92.58	
17.5	0	92.16	TW
19.9	0	92.57	
20.4	0	92.85	
20.9	0	94.01	TOB R
24.8	0	94.72	
32	0	94.55	


Cross Sectional Geometry

	Channel	Left	Right
Floodprone Elevation (ft)	95.62	95.62	95.62
Bankfull Elevation (ft)	93.89	93.89	93.89
Floodprone Width (ft)	313		
Bankfull Width (ft)	7.35	3.67	3.68
Entrenchment Ratio	42.6		
Mean Depth (ft)	1.34	1.31	1.37
Maximum Depth (ft)	1.73	1.69	1.73
Width/Depth Ratio	5.49	2.8	2.69
Bankfull Area (sq ft)	9.87	4.82	5.05
Wetted Perimeter (ft)	8.9	6.12	6.16
Hydraulic Radius (ft)	1.11	0.79	0.82
Begin BKF Station	13.5	13.5	17.17
End BKF Station	20.85	17.17	20.85

Entrainment Calculations (Shields Curve)

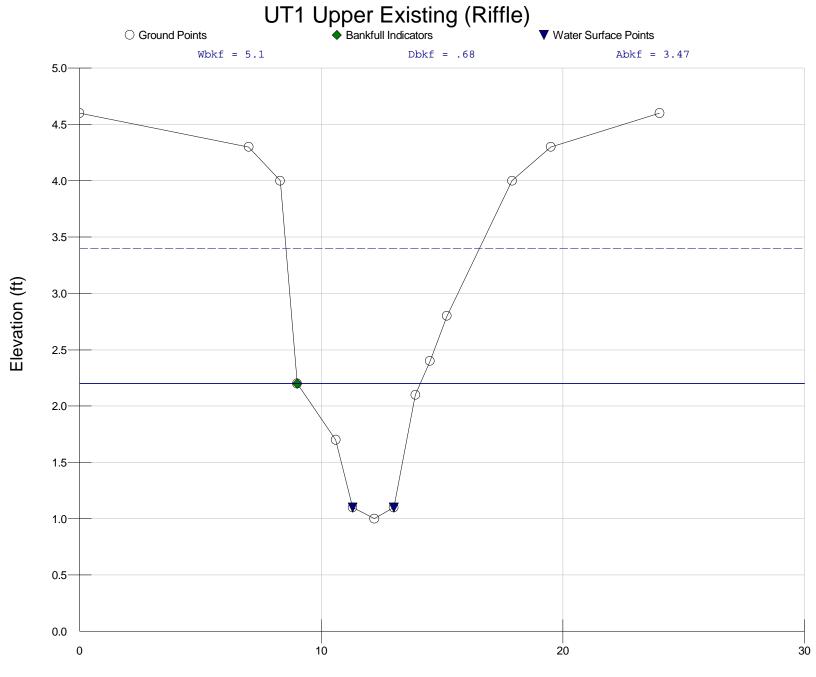
	Channel	Left Side	Right Side
Slope	0.0115	0	0
Shear Stress (lb/sq ft)	0.80		
Movable Particle (mm)	49.8		

Horizontal Distance (ft)

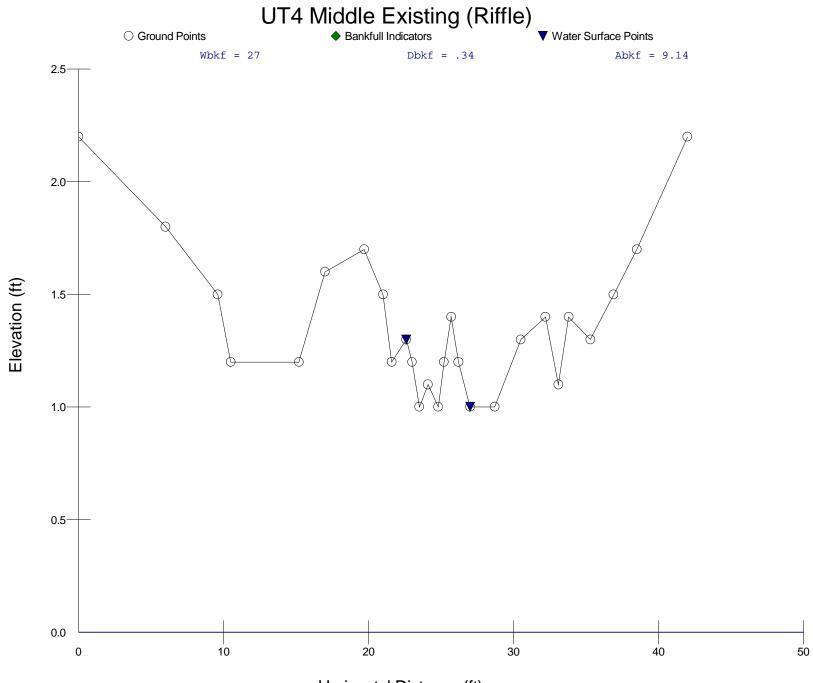
RIVERMORPH CROSS SECTION SUMMARY

River Name:RockwellReach Name:UT4 LowerCross Section Name:Cross-section 17 - Pool (12-04-07)Survey Date:12/06/2007

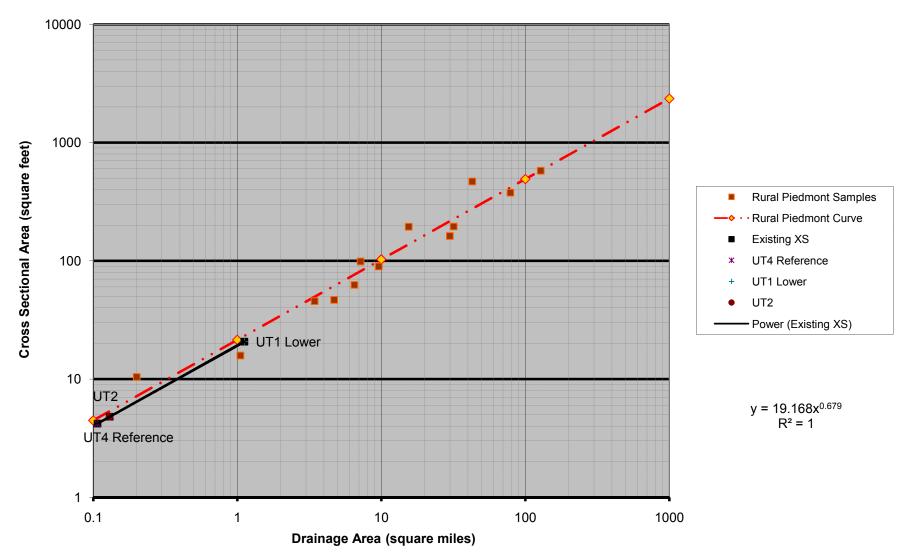
Cross Section Data EntryBM Elevation:0 ftBacksight Rod Reading:0 ft


TAPE	FS	ELEV	NOTE
0	0	94.47	
11	0	94.56	
17	0	94.35	TOB L
19	0	93.87	
19.6	0	92.56	
20.6	0	92.26	TW
23	0	92.41	
25	0	92.65	
25.7	0	93.34	BKF R
26.7	0	94.01	TOB R
31	0	94.40	
35	0	94.43	

Cross Sectional Geometry


	Channel	Left	Right
Floodprone Elevation (ft)	94.42	94.42	94.42
Bankfull Elevation (ft)	93.34	93.34	93.34
Floodprone Width (ft)	18.67		
Bankfull Width (ft)	6.46	3.23	3.23
Entrenchment Ratio	2.89		
Mean Depth (ft)	0.83	0.92	0.73
Maximum Depth (ft)	1.08	1.08	0.96
Width/Depth Ratio	7.78	3.51	4.42
Bankfull Area (sq ft)	5.34	2.98	2.36
Wetted Perimeter (ft)	7.3	4.74	4.49
Hydraulic Radius (ft)	0.73	0.63	0.53
Begin BKF Station	19.24	19.24	22.47
End BKF Station	25.7	22.47	25.7

Entramment Calculations (Rosz	,en wiounieu s	Silicius Cuive	<u>]</u>
	Channel	Left Side	Right Side
Slope	0	0	0
Shear Stress (lb/sq ft)			
Movable Particle (mm)			


Entrainment Calculations (Rosgen Modified Shields Curve)

Horizontal Distance (ft)

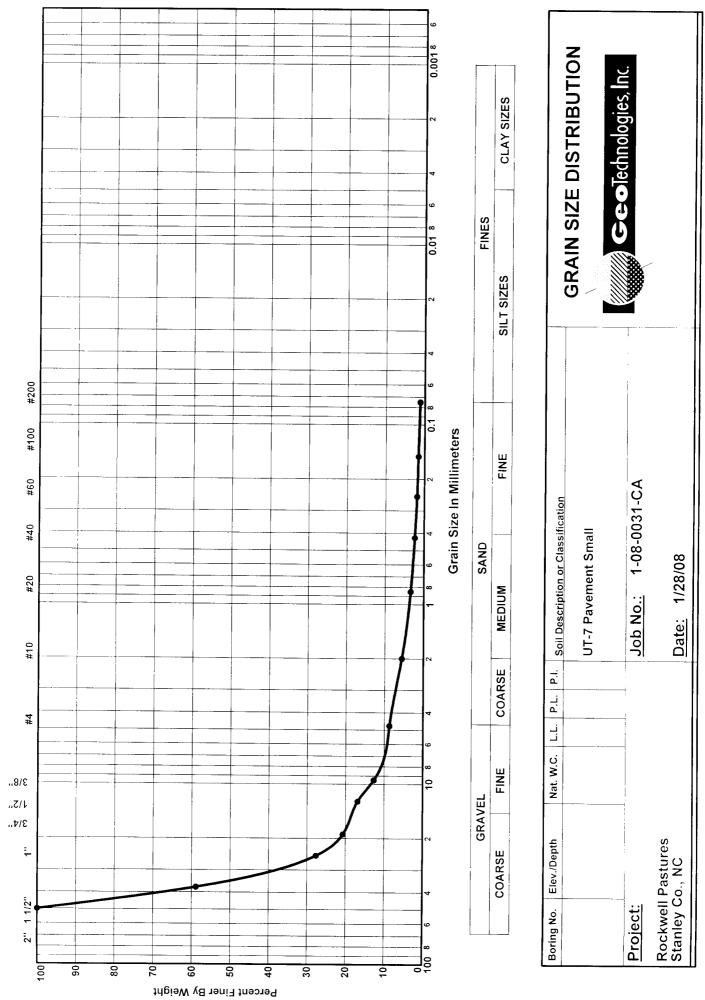
Horizontal Distance (ft)

North Carolina Rural Piedmont Regional Curves: Drainage Area vs. Bankful Cross Sectional Area

Appendix 8

Sampled Stream Materials

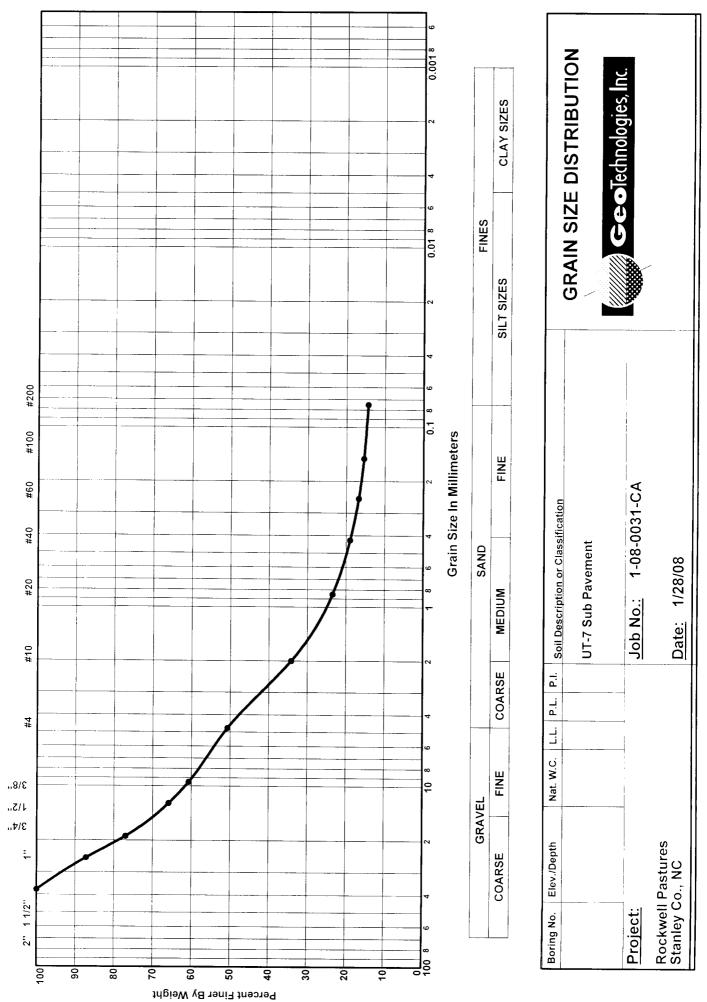
 Job Number:
 Job Name:
 Rockwell Pastures


 Sample I.D.
 UT-7 Pavement Small

r

Sieve Analysis 200 Wash

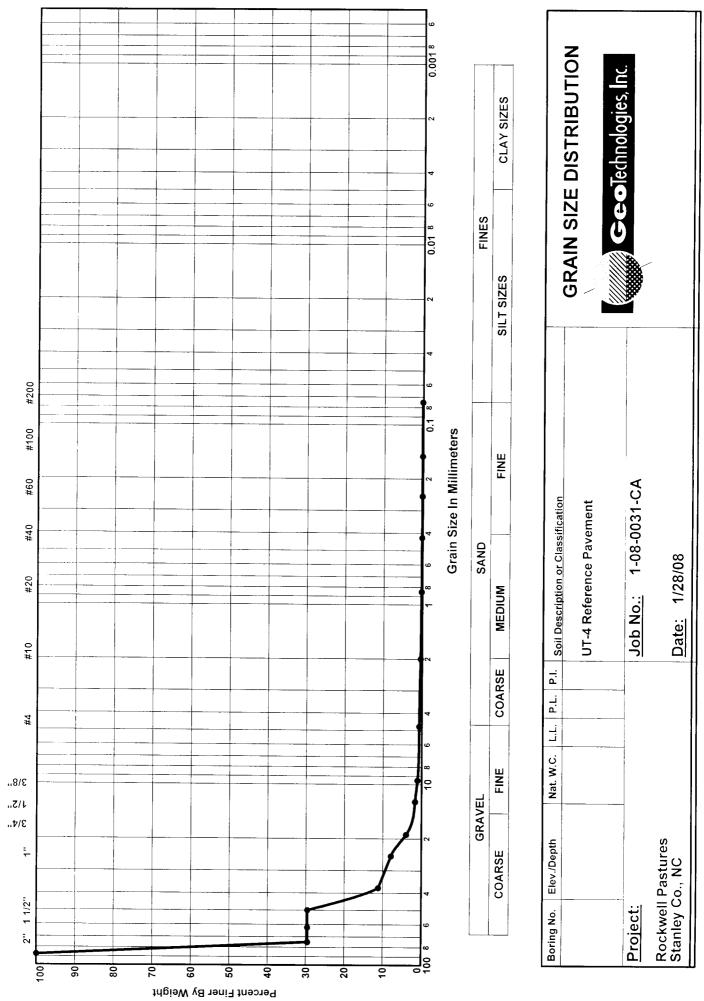
Dry Weight of Total Sample		grams
WEIGHT	PERCENT	PERCENT
<u>RETAINED</u>	<u>RETAINED</u>	<u>PASSING</u>
0.00	0.0%	100.0%
0.00	0.0%	100.0%
0.00	0.0%	100.0%
115.43	41.1%	58.9%
202.93	72.3%	27.7%
222.34	79.3%	20.7%
233.01	83.1%	16.9%
244.86	87.3%	12.7%
256.26	91.3%	8.7%
264.77	94.4%	5.6%
270.98	96.6%	3.4%
273.78	97.6%	2.4%
275.19	98.1%	1.9%
276.18	98.4%	1.6%
277.11	98.8%	1.2%
	WEIGHT RETAINED 0.00 0.00 115.43 202.93 222.34 233.01 244.86 256.26 264.77 270.98 273.78 275.19 276.18	WEIGHT RETAINEDPERCENT RETAINED0.000.0%0.000.0%0.000.0%0.000.0%115.4341.1%202.9372.3%222.3479.3%233.0183.1%244.8687.3%256.2691.3%264.7794.4%270.9896.6%273.7897.6%275.1998.1%276.1898.4%


ROCK 1 =64.03 grams ROCK 2 = 51.41 grams

Job Number:	Job Name:	Rockwell Pastures	
Sample I.D.	UT-7 Sub Pavement		

Sieve Analysis 200 Wash

Dry Weight of T	otal Sample	951.94	grams
SIEVE	WEIGHT	PERCENT	PERCENT
SIZE	<u>RETAINED</u>	<u>RETAINED</u>	<u>PASSING</u>
3.0	0.00	0.0%	100.0%
2.5	0.00	0.0%	100.0%
2.0	0.00	0.0%	100.0%
11/2	0.00	0.0%	100.0%
1.0	121.62	12.8%	87.2%
3/4	219.35	23.0%	77.0%
1/2	324.35	34.1%	65.9%
3/8	374.28	39.3%	60.7%
#4	469.06	49.3%	50.7%
#10	626.84	65.8%	34.2%
#20	728.12	76.5%	23.5%
#40	770.69	81.0%	19.0%
#60	791.78	83.2%	16.8%
#100	804.36	84.5%	15.5%
#200	814.92	85.6%	14.4%

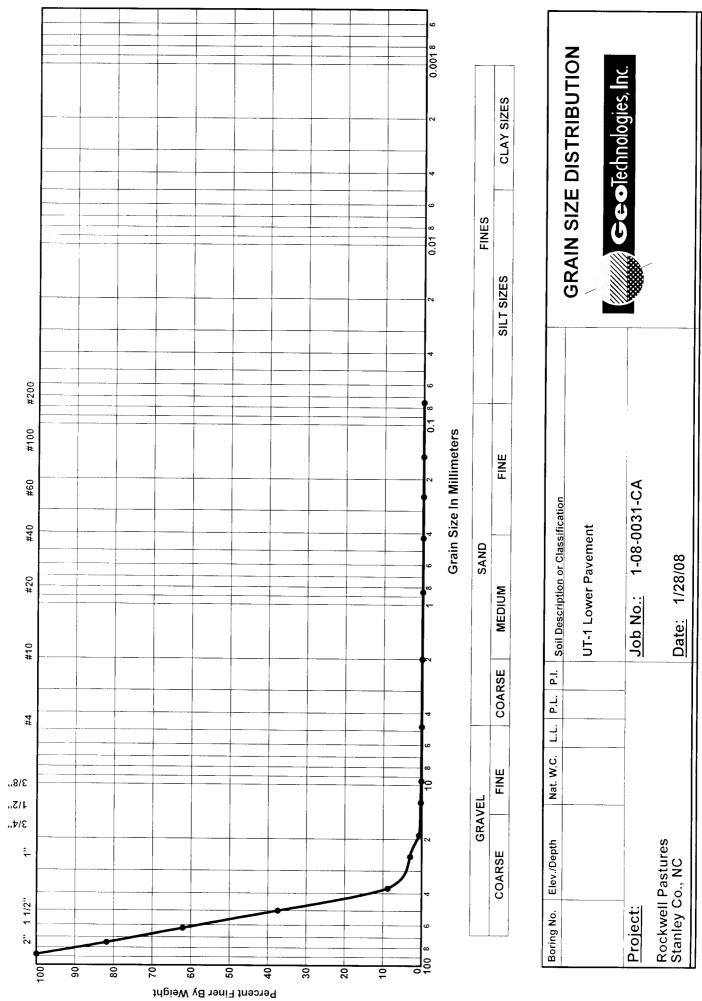


Job Number:	Job Name:	Rockwell Pastures
Sample I.D.	UT-4 Reference Pavement	

Sieve Analysis 200 Wash

Dry Weight of T	otal Sample	1031.85	grams
SIEVE	WEIGHT	PERCENT	PERCENT
SIZE	<u>RETAINED</u>	<u>RETAINED</u>	PASSING
3.0	726.67	70.4%	29.6%
2.5	726.67	70.4%	29.6%
2.0	726.67	70.4%	29.6%
11/2	915.88	88.8%	11.2%
1.0	950.64	92.1%	7.9%
3/4	990.76	96.0%	4.0%
1/2	1014.51	98.3%	1.7%
3/8	1020.87	98.9%	1.1%
#4	1024.70	99.3%	0.7%
#10	1027.88	99.6%	0.4%
#20	1029.36	99.76%	0.24%
#40	1029.87	99.81%	0.19%
#60	1030.12	99.83%	0.17%
#100	1030.20	99.84%	0.16%
#200	1030.23	99.843%	0.157%

ROCK 1 = 726.67 grams ROCK 2 = 81.37 grams



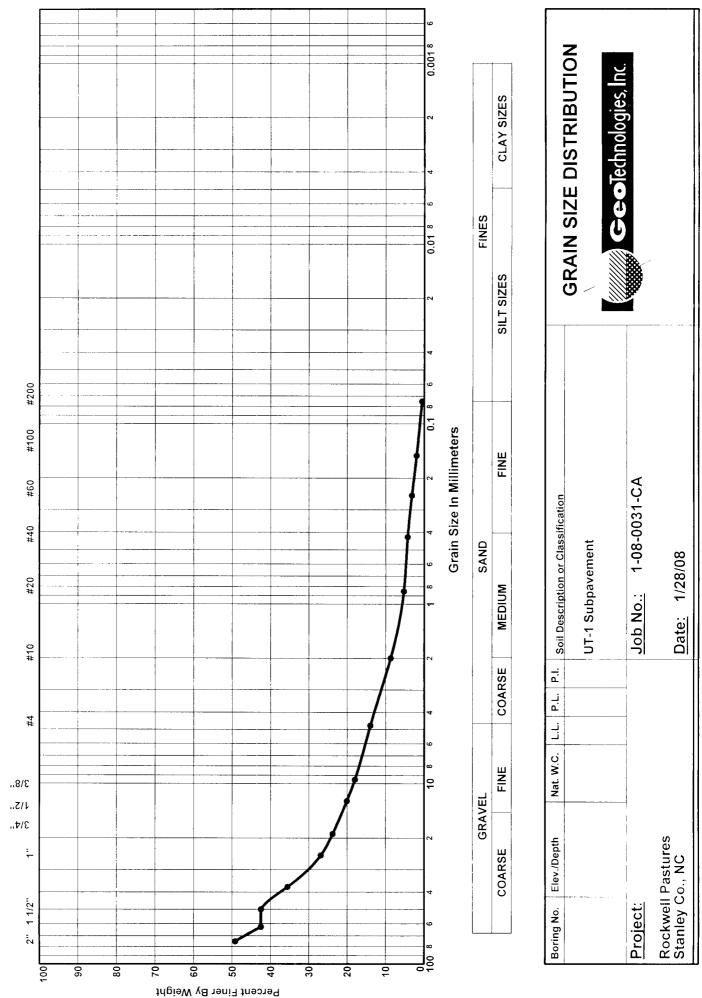
Job Number:	Job Name:	Rockwell Pastures
Sample I.D.	UT-1 Lower Pavement	

Sieve Analysis 200 Wash

Dry Weight of Total Sample		3610.80	grams
SIEVE	WEIGHT	PERCENT	PERCENT
<u>SIZE</u>	<u>RETAINED</u>	<u>RETAINED</u>	PASSING
3.0	657.71	18.2%	81.8%
2.5	1368.34	37.9%	62.1%
2.0	2259.21	62.6%	37.4%
11/2	3292.11	91.2%	8.8%
1.0	3502.81	97.0%	3.0%
3/4	3585.26	99.29%	0.71%
1/2	3599.82	99.70%	0.30%
3/8	3604.06	99.81%	0.19%
#4	3604.98	99.84%	0.16%
#10	3606.63	99.88%	0.12%
#20	3608.88	99.95%	0.05%
#40	3609.78	99.97%	0.03%
#60	3610.26	99.99%	0.01%
#100	3610.55	99.99%	0.01%
#200	3610.66	99.996%	0.004%

ROCK 1 = 710.80 grams ROCK 2 = 657.71 grams

Job Number:	Job Name:	Rockwell Pastures
Sample I.D.	UT-1 Sub Pavement	

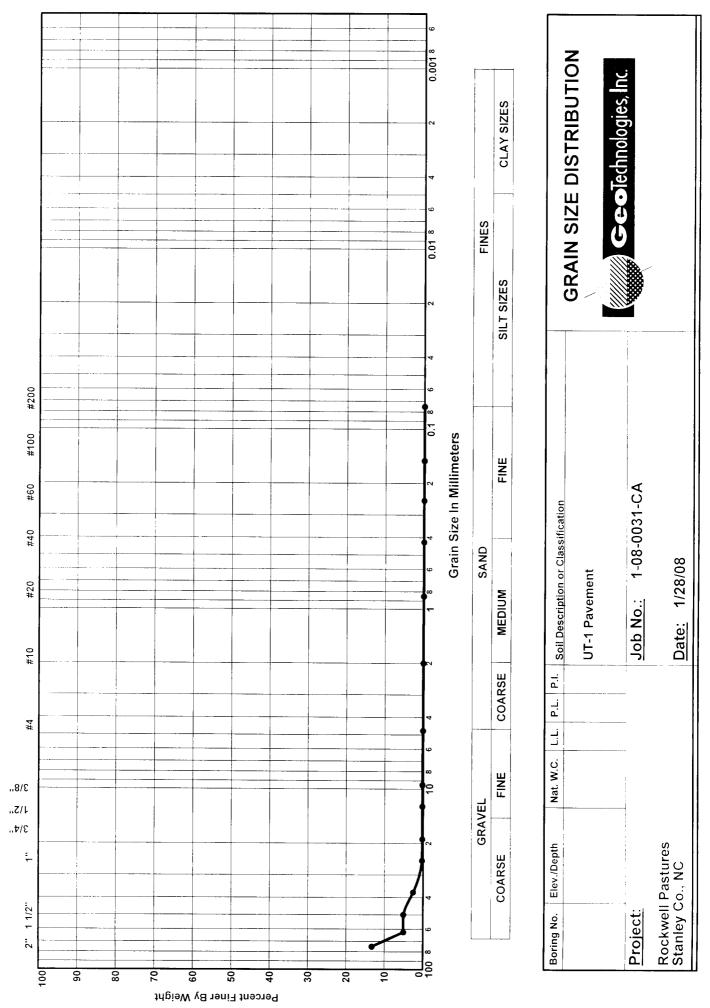

Sieve Analysis 200 Wash

Dry Weight of Total Sample19790.75gramsSIEVEWEIGHTPERCENTPERCENTSIZERETAINED10052.2050.8%49.2%2 511282.2457.5%42.5%

		0010/0	·•·= /•
2.5	11383.24	57.5%	42.5%
2.0	11383.24	57.5%	42.5%
11/2	12747.63	64.4%	35.6%
1.0	14459.36	73.1%	26.9%
3/4	15074.10	76.2%	23.8%
1/2	15818.97	79.9%	20.1%
3/8	16221.44	82.0%	18.0%
#4	17019.93	86.0%	14.0%
#10	18068.37	91.3%	8.7%
#20	18736.55	94.7%	5.3%
#40	18944.14	95.7%	4.3%
#60	19160.87	96.8%	3.2%
#100	19401.12	98.0%	2.0%
#200	19668.76	99.4%	0.6%

3.0+ Rock = 9236.8 grams

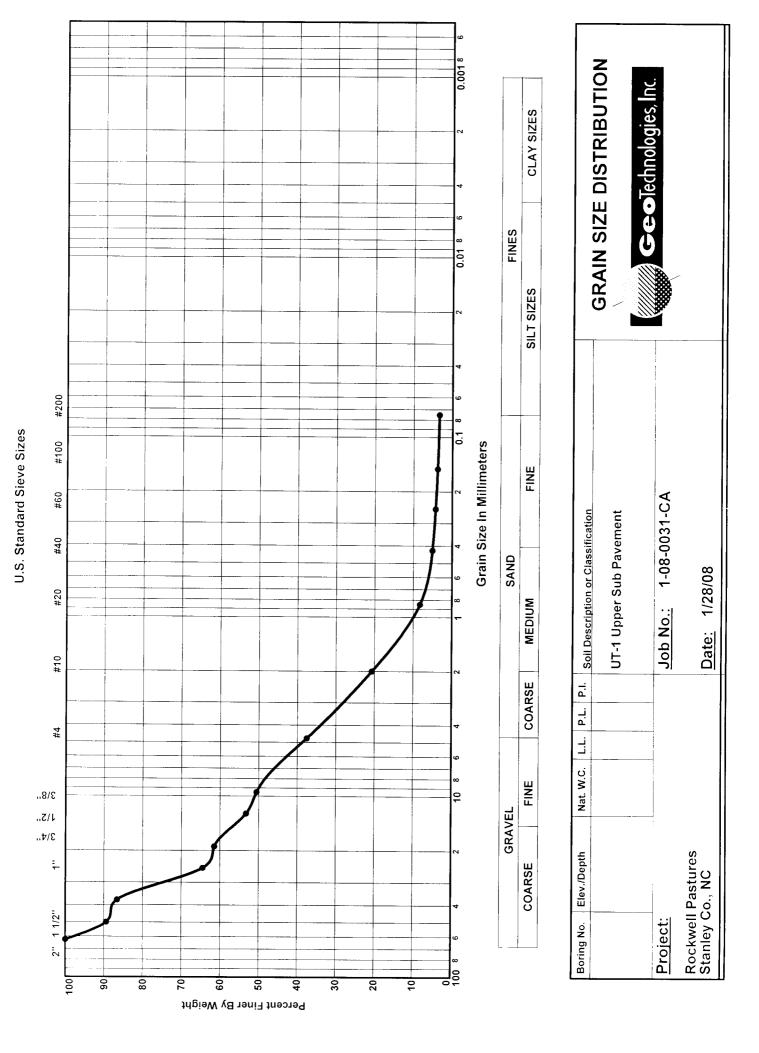
Length x Width x Thickness = $18.75 \times 9.75 \times 1.55$ in.


Job Number:		Job Name:	Rockwell Pastures
Sample I.D.	UT-1 Pavement		

Sieve Analysis 200 Wash

Dry Weight of Total Sample		10458.01	grams
SIEVE	WEIGHT	PERCENT	PERCENT
<u>SIZE</u>	RETAINED	<u>RETAINED</u>	PASSING
3+	9069.32	86.7%	13.3%
2.5	9923.59	94.9%	5.1%
2.0	9923.59	94.9%	5.1%
11/2	10183.91	97.4%	2.6%
1.0	10431.01	99.7%	0.3%
3/4	10433.56	99.8%	0.23%
1/2	10433.56	99.8%	0.23%
3/8	10433.56	99.8%	0.23%
#4	10443.28	99.9%	0.14%
#10	10449.44	99.9%	0.08%
#20	10452.99	100.0%	0.05%
#40	10454.83	100.0%	0.03%
#60	10455.94	100.0%	0.02%
#100	10456.65	100.0%	0.01%
#200	10457.31	100.0%	0.007%

ROCK 1 = 7352.3 grams


Length x Width x Thickness = $6.445 \times 5.665 \times 6.945$ in. ROCK 2 = 1717.02 grams Length x Width x Thickness = $4.695 \times 3.892 \times 3.755$ in.

Job Number:	Job Name:	Rockwell Pastures	
Sample I.D.	UT-1 Upper Sub Pavement		

Sieve Analysis 200 Wash

Dry Weight of T	otal Sample	2677.32	grams
SIEVE	WEIGHT	PERCENT	PERCENT
<u>SIZE</u>	<u>RETAINED</u>	RETAINED	PASSING
3.0	0.00	0.0%	100.0%
2.5	0.00	0.0%	100.0%
2.0	282.96	10.6%	89.4%
11/2	357.78	13.4%	86.6%
1.0	949.60	35.5%	64.5%
3/4	1031.45	38.5%	61.5%
1/2	1249.20	46.7%	53.3%
3/8	1323.10	49.4%	50.6%
#4	1670.61	62.4%	37.6%
#10	2124.02	79.3%	20.7%
#20	2454.48	91.7%	8.3%
#40	2539.58	94.9%	5.1%
#60	2563.21	95.7%	4.3%
#100	2575.66	96.2%	3.8%
#200	2587.30	96.6%	3.4%

Appendix 9

Soil Water and Environment Group (SWE) Soil Analysis and Evaluation for Rockwell Site Wetland and Stream Mitigation Project

March 15, 2007

Mr. Todd St. John Kimley-Horn and Associates, Inc. PO Box 33068 Raleigh, NC 27636-3068

Re: Soil Analysis and Evaluation for the Rockwell Wetland and Stream Restoration Mitigation Project Site EEP Proposal

Dear Mr. St. John,

The following is a description of the data set included with this correspondence related to the Stanly County (Rockwell) Wetland Restoration Site:

Soils Descriptions

On March 9th, 2007, SWE Group personnel investigated the Rockwell Stream and Wetland EEP Mitigation Project Site to confirm NRCS soil survey mapping data, record detailed soil descriptions for selected areas representing different landscape positions across the site, and to determine the extent of hydric soils for the purpose of wetland restoration site criteria. A series of hand augerings were accomplished across selected areas of the proposed wetland restoration site at maximum depths of approximately 18-24 in. Detailed soil descriptions including depth of horizon, color, texture, structure, and consistence were recorded and a sketch of the area was created entitled Rockwell Site (enclosed).

The site specific soil descriptions included in this report are most similar to Chewacla loam and Oakboro silt loam type series soils as described by the Stanly County Soil Survey (NRCS, unpublished) with some variations in texture, color, and redoximorphic features. However, some descriptions are most similar to Wehadkee loam series soil described in other county surveys. These soils are somewhat poorly drained and frequently flooded from riverine systems and toeslope drainage. Subsoil consists of loamy and silty clay textured soils. These soils are found on nearly level flood plains along creeks and drainageways. Permeability is moderate for these soil series. The subsoil is characterized by a clay or silty clay that restricts water movement between 3 and 33 inches below the soil surface. Seasonally high water tables are found below the soil surface between .5 and 1.5 feet for the Chewacla and Wehadkee and 1 to 2 feet for the Oakboro series soil.

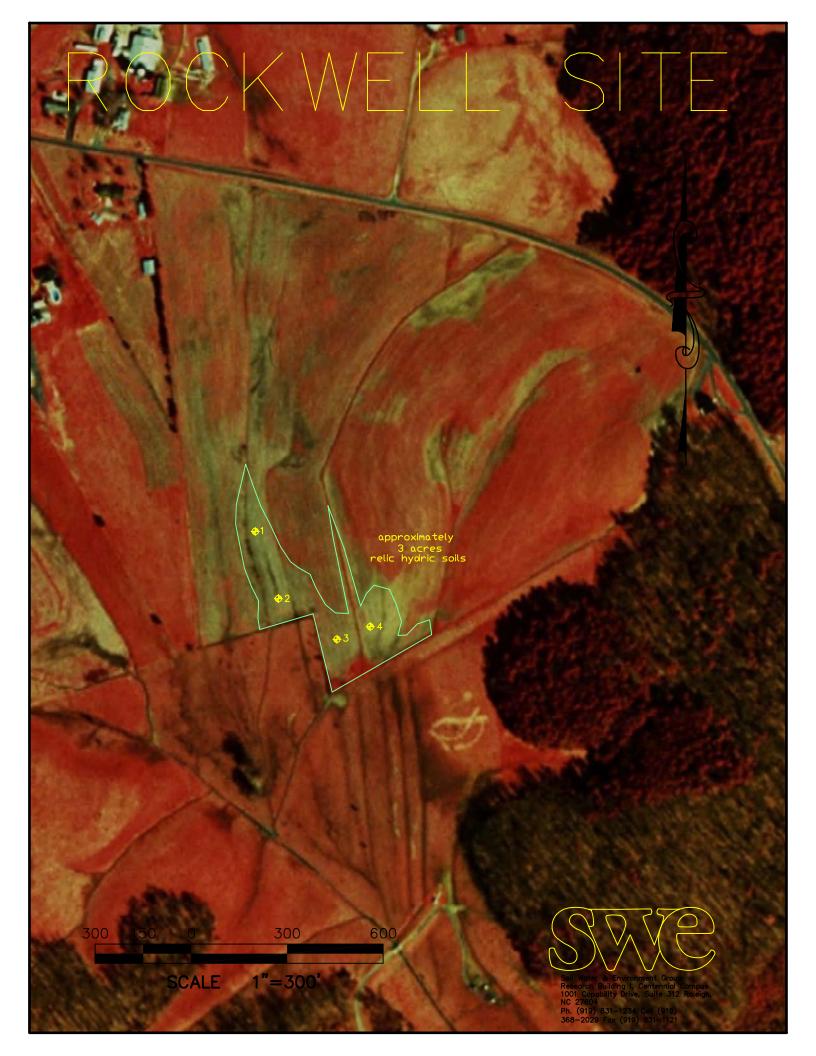
Overall, the areas investigated have hydric soil characteristics and hydric soils that are suitable for wetland restoration. Strong redoximorphic features are present indicating seasonally high water tables and frequent inundation from toeslope subsurface drainage and surface runoff from field ditches. These features include relic and present oxidized root channels, depleted matrices, and chroma 2 colors in the upper soil profile. Currently the fields investigated are in row crops (corn and soybeans) and have hydric vegetation volunteering among other herbaceaous vegetation. In addition, wrack lines were observed from recent overland surface runoff.

For areas where relic redoximorphic features occur greater than 12 in. due to site disturbance from farming, minor grading of less than or equal to 6 in. (USACE Guidance) in these areas would most likely result in a change to more hydric conditions and an elevated water table similar to adjacent soil areas. From observations, these areas in question most likely were crowned to maximize row crop acreage, resulting in a cap of soil to increase runoff and drainage.

Let me know if you have any questions concerning the enclosed soil data and discussion. We look forward to continuing to work with you on this project.

Sincerely,

OF NORTH


Fuder

Scott J. Frederick, EI, NCLSS Environmental Scientist

Research Building I, Centennial Campus 1001 Capability Dr., Suite 312 Raleigh, NC 27606 Ph (919) 831-1234 Fax (919) 831-1121 Cell (919) 368-2029 sjfrederick@swegrp.com www.swegrp.com

Encl: soils data

Soil Investigation Data Sheet

Soil Borin	a:	SB-1									
Location:		Rockwell Past	ures				Date:		3/8/2007		
County:		Stanly			Investigator(s): SJF,BEJ						
Lat./Long	.:	35-16-47.13N	,80-07-58.59V	V			Elev.:				
Parent Ma	aterial:	Carolina slate					Drainage (We			orly drained	
Moisture		moist	ived entire the		antia Duatrudant		Slope (%):		1-2%		
Classifica	tion:	E Fine-ioamy,mi	ixed,active,the	ermic Fluvaqu	entic Dystrudept		Vegetative Co Water Table:		rye grass ~ 12 in.		
Aspect:	e Position:	terrace					Water Table.		~ 12 111.		
Lanuscap	e rosidon.	lenace		1		Structure					
Horiz.	Depth (in.	Main Colors	Mottles	Texture	Grade		Туре	Moist & Wet Consist.	<u>Ped</u> Coatings	<u>Hoizon</u> Boundary	Other Remarks
110112.	Doptin (ini.	<u>(110101/</u>	Mottico	TOALGIO	orado	01000	1700	00110101	oounigo	Doundary	
								friable, ns,			
Ар	0-6	10YR 4/4	-	silt loam	mod.	med.	sub blk.	np	-	grad., wavy	fine roots
				silty clay				friable, ns,			
B1	6-10	10YR 4/4	10YR 6/1	loam	mod.	med.	sub blk.	np	-	grad., wavy	
			2.5YR 6/2	silty clay				friable, ns,			
B2	10-18	10YR 4/4	10YR 7/1	loam	mod.	med.	sub blk.	np	-	grad., wavy	redox. features, oxidized root channels, Mn conc.

Appendix 10

Hydrologic Gauge Data Summary, Groundwater and Rainfall Information

Appendix 10. Hydrologic Gauge Data Summary, Groundwater and Rainfall Information.

Wells have recently been installed to monitor groundwater at the wetland restoration areas along UT6 as well as the hydrologic reference wetland adjacent to UT1. Data will be gathered in fall 2008 and will be used in conjunction with soils analysis data and general conductivity data to evaluate water table elevations.

Gauge data, groundwater, and rainfall information will be recorded and analyzed prior to final design and construction of the wetland site.